Spaces:
Runtime error
Runtime error
Commit
·
5c09ac9
1
Parent(s):
422d720
Create models/custom_resnet.py
Browse files- models/custom_resnet.py +85 -0
models/custom_resnet.py
ADDED
|
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from __future__ import print_function
|
| 2 |
+
import torch
|
| 3 |
+
import torch.nn as nn
|
| 4 |
+
import torch.nn.functional as F
|
| 5 |
+
import torch.optim as optim
|
| 6 |
+
from torchvision import datasets, transforms
|
| 7 |
+
from tqdm import tqdm
|
| 8 |
+
|
| 9 |
+
class Net(nn.Module):
|
| 10 |
+
def __init__(self):
|
| 11 |
+
super(Net, self).__init__()
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
self.prep_layer = nn.Sequential(
|
| 15 |
+
nn.Conv2d(in_channels=3, out_channels=64, kernel_size=(3, 3), padding=1, stride=1, bias=False),
|
| 16 |
+
nn.BatchNorm2d(64),
|
| 17 |
+
nn.ReLU(),
|
| 18 |
+
) # output_size = 64,32,32
|
| 19 |
+
|
| 20 |
+
self.layer1_x = nn.Sequential(
|
| 21 |
+
nn.Conv2d(in_channels=64, out_channels=128, kernel_size=(3, 3), padding=1, stride=1, bias=False),
|
| 22 |
+
nn.MaxPool2d(2, 2),
|
| 23 |
+
nn.BatchNorm2d(128),
|
| 24 |
+
nn.ReLU(),
|
| 25 |
+
) # output_size = 128,16,16
|
| 26 |
+
|
| 27 |
+
self.layer1_r = nn.Sequential(
|
| 28 |
+
nn.Conv2d(in_channels=128, out_channels=128, kernel_size=(3, 3), padding=1, stride=1, bias=False),
|
| 29 |
+
nn.BatchNorm2d(128),
|
| 30 |
+
nn.ReLU(),
|
| 31 |
+
nn.Conv2d(in_channels=128, out_channels=128, kernel_size=(3, 3), padding=1, stride=1, bias=False),
|
| 32 |
+
nn.BatchNorm2d(128),
|
| 33 |
+
nn.ReLU(),
|
| 34 |
+
) #output_size = 128,16,16
|
| 35 |
+
|
| 36 |
+
self.layer2 = nn.Sequential(
|
| 37 |
+
nn.Conv2d(in_channels=128, out_channels=256, kernel_size=(3, 3), padding=1, stride=1, bias=False),
|
| 38 |
+
nn.MaxPool2d(2, 2),
|
| 39 |
+
nn.BatchNorm2d(256),
|
| 40 |
+
nn.ReLU(),
|
| 41 |
+
) # output_size = 256,8,8
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
self.layer3_x = nn.Sequential(
|
| 45 |
+
nn.Conv2d(in_channels=256, out_channels=512, kernel_size=(3, 3), padding=1, stride=1, bias=False),
|
| 46 |
+
nn.MaxPool2d(2, 2),
|
| 47 |
+
nn.BatchNorm2d(512),
|
| 48 |
+
nn.ReLU(),
|
| 49 |
+
) # output_size = 512,4,4
|
| 50 |
+
|
| 51 |
+
self.layer3_r = nn.Sequential(
|
| 52 |
+
nn.Conv2d(in_channels=512, out_channels=512, kernel_size=(3, 3), padding=1, stride=1, bias=False),
|
| 53 |
+
nn.BatchNorm2d(512),
|
| 54 |
+
nn.ReLU(),
|
| 55 |
+
nn.Conv2d(in_channels=512, out_channels=512, kernel_size=(3, 3), padding=1, stride=1, bias=False),
|
| 56 |
+
nn.BatchNorm2d(512),
|
| 57 |
+
nn.ReLU(),
|
| 58 |
+
) #output_size = 512,4,4
|
| 59 |
+
|
| 60 |
+
self.last_maxpool = nn.Sequential(
|
| 61 |
+
nn.MaxPool2d(4, 4), #512
|
| 62 |
+
|
| 63 |
+
)
|
| 64 |
+
self.last_fc = nn.Sequential(
|
| 65 |
+
nn.Linear(512,10,bias=False)
|
| 66 |
+
)
|
| 67 |
+
|
| 68 |
+
def forward(self, x):
|
| 69 |
+
x = self.prep_layer(x)
|
| 70 |
+
x = self.layer1_x(x)
|
| 71 |
+
x_layer1_identity = x.clone()
|
| 72 |
+
x = self.layer1_r(x)
|
| 73 |
+
#x = F.relu(x + x_layer1_identity)
|
| 74 |
+
x = x + x_layer1_identity
|
| 75 |
+
x = self.layer2(x)
|
| 76 |
+
x = self.layer3_x(x)
|
| 77 |
+
x_layer3_identity = x.clone()
|
| 78 |
+
x = self.layer3_r(x)
|
| 79 |
+
#x = F.relu(x + x_layer3_identity)
|
| 80 |
+
x = x + x_layer3_identity
|
| 81 |
+
x = self.last_maxpool(x)
|
| 82 |
+
x = x.view(-1,512)
|
| 83 |
+
x = self.last_fc(x)
|
| 84 |
+
x = x.view(-1, 10)
|
| 85 |
+
return F.log_softmax(x, dim=-1)
|