Spaces:
Sleeping
Sleeping
Create evaluation_module.py
Browse files- evaluation_module.py +77 -0
evaluation_module.py
ADDED
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from sacrebleu import corpus_bleu
|
3 |
+
from rouge_score import rouge_scorer
|
4 |
+
from bert_score import score
|
5 |
+
from transformers import GPT2LMHeadModel, GPT2Tokenizer, pipeline
|
6 |
+
import nltk
|
7 |
+
from nltk.util import ngrams
|
8 |
+
|
9 |
+
class RAGEvaluator:
|
10 |
+
def __init__(self):
|
11 |
+
self.gpt2_model, self.gpt2_tokenizer = self.load_gpt2_model()
|
12 |
+
self.bias_pipeline = pipeline("zero-shot-classification", model="Hate-speech-CNERG/dehatebert-mono-english")
|
13 |
+
|
14 |
+
def load_gpt2_model(self):
|
15 |
+
model = GPT2LMHeadModel.from_pretrained('gpt2')
|
16 |
+
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
|
17 |
+
return model, tokenizer
|
18 |
+
|
19 |
+
def evaluate_bleu_rouge(self, candidates, references):
|
20 |
+
bleu_score = corpus_bleu(candidates, [references]).score
|
21 |
+
scorer = rouge_scorer.RougeScorer(['rouge1', 'rouge2', 'rougeL'], use_stemmer=True)
|
22 |
+
rouge_scores = [scorer.score(ref, cand) for ref, cand in zip(references, candidates)]
|
23 |
+
rouge1 = sum([score['rouge1'].fmeasure for score in rouge_scores]) / len(rouge_scores)
|
24 |
+
return bleu_score, rouge1
|
25 |
+
|
26 |
+
def evaluate_bert_score(self, candidates, references):
|
27 |
+
P, R, F1 = score(candidates, references, lang="en", model_type='bert-base-multilingual-cased')
|
28 |
+
return P.mean().item(), R.mean().item(), F1.mean().item()
|
29 |
+
|
30 |
+
def evaluate_perplexity(self, text):
|
31 |
+
encodings = self.gpt2_tokenizer(text, return_tensors='pt')
|
32 |
+
max_length = self.gpt2_model.config.n_positions
|
33 |
+
stride = 512
|
34 |
+
lls = []
|
35 |
+
for i in range(0, encodings.input_ids.size(1), stride):
|
36 |
+
begin_loc = max(i + stride - max_length, 0)
|
37 |
+
end_loc = min(i + stride, encodings.input_ids.size(1))
|
38 |
+
trg_len = end_loc - i
|
39 |
+
input_ids = encodings.input_ids[:, begin_loc:end_loc]
|
40 |
+
target_ids = input_ids.clone()
|
41 |
+
target_ids[:, :-trg_len] = -100
|
42 |
+
with torch.no_grad():
|
43 |
+
outputs = self.gpt2_model(input_ids, labels=target_ids)
|
44 |
+
log_likelihood = outputs[0] * trg_len
|
45 |
+
lls.append(log_likelihood)
|
46 |
+
ppl = torch.exp(torch.stack(lls).sum() / end_loc)
|
47 |
+
return ppl.item()
|
48 |
+
|
49 |
+
def evaluate_diversity(self, texts):
|
50 |
+
all_tokens = [tok for text in texts for tok in text.split()]
|
51 |
+
unique_bigrams = set(ngrams(all_tokens, 2))
|
52 |
+
diversity_score = len(unique_bigrams) / len(all_tokens) if all_tokens else 0
|
53 |
+
return diversity_score
|
54 |
+
|
55 |
+
def evaluate_racial_bias(self, text):
|
56 |
+
results = self.bias_pipeline([text], candidate_labels=["hate speech", "not hate speech"])
|
57 |
+
bias_score = results[0]['scores'][results[0]['labels'].index('hate speech')]
|
58 |
+
return bias_score
|
59 |
+
|
60 |
+
def evaluate_all(self, response, reference):
|
61 |
+
candidates = [response]
|
62 |
+
references = [reference]
|
63 |
+
bleu, rouge1 = self.evaluate_bleu_rouge(candidates, references)
|
64 |
+
bert_p, bert_r, bert_f1 = self.evaluate_bert_score(candidates, references)
|
65 |
+
perplexity = self.evaluate_perplexity(response)
|
66 |
+
diversity = self.evaluate_diversity(candidates)
|
67 |
+
racial_bias = self.evaluate_racial_bias(response)
|
68 |
+
return {
|
69 |
+
"BLEU": bleu,
|
70 |
+
"ROUGE-1": rouge1,
|
71 |
+
"BERT P": bert_p,
|
72 |
+
"BERT R": bert_r,
|
73 |
+
"BERT F1": bert_f1,
|
74 |
+
"Perplexity": perplexity,
|
75 |
+
"Diversity": diversity,
|
76 |
+
"Racial Bias": racial_bias
|
77 |
+
}
|