Open-Sora / app.py
sandeshrajx's picture
Update app.py
01a1020 verified
raw
history blame
6.98 kB
import gradio as gr
from huggingface_hub import hf_hub_download, snapshot_download
import subprocess
import tempfile, time
import shutil
import os
import spaces
from transformers import T5ForConditionalGeneration, T5Tokenizer
import os
print ("starting the app.")
def download_t5_model(model_id, save_directory):
# Modelin tokenizer'ını ve modeli indir
if not os.path.exists(save_directory):
os.makedirs(save_directory)
snapshot_download(repo_id="DeepFloyd/t5-v1_1-xxl",local_dir=save_directory, local_dir_use_symlinks=False)
# Model ID ve kaydedilecek dizin
model_id = "DeepFloyd/t5-v1_1-xxl"
save_directory = "pretrained_models/t5_ckpts/t5-v1_1-xxl"
# Modeli indir
st_time_t5 = time.time()
download_t5_model(model_id, save_directory)
print(f"T5 Download Time : {time.time()-st_time_t5} seconds")
def download_model(repo_id, model_name):
model_path = hf_hub_download(repo_id=repo_id, filename=model_name)
return model_path
import glob
@spaces.GPU(duration=500)
def run_model(temp_config_path, ckpt_path):
start_time = time.time() # Record the start time
cmd = [
"torchrun", "--standalone", "--nproc_per_node", "1",
"scripts/inference.py", temp_config_path,
"--ckpt-path", ckpt_path
]
subprocess.run(cmd)
end_time = time.time() # Record the end time
execution_time = end_time - start_time # Calculate the execution time
print(f"Model Execution time: {execution_time} seconds")
def run_inference(model_name, prompt_text):
repo_id = "hpcai-tech/Open-Sora"
# Map model names to their respective configuration files
config_mapping = {
"OpenSora-v1-16x256x256.pth": "configs/opensora/inference/16x256x256.py",
"OpenSora-v1-HQ-16x256x256.pth": "configs/opensora/inference/16x256x256.py",
"OpenSora-v1-HQ-16x512x512.pth": "configs/opensora/inference/16x512x512.py"
}
config_path = config_mapping[model_name]
st_time_sora = time.time()
ckpt_path = download_model(repo_id, model_name)
print(f"Open-Sora Download Time : {time.time()-st_time_sora} seconds")
# Save prompt_text to a temporary text file
prompt_file = tempfile.NamedTemporaryFile(delete=False, suffix=".txt", mode='w')
prompt_file.write(prompt_text)
prompt_file.close()
with open(config_path, 'r') as file:
config_content = file.read()
config_content = config_content.replace('prompt_path = "./assets/texts/t2v_samples.txt"', f'prompt_path = "{prompt_file.name}"')
with tempfile.NamedTemporaryFile('w', delete=False, suffix='.py') as temp_file:
temp_file.write(config_content)
temp_config_path = temp_file.name
run_model(temp_config_path, ckpt_path)
save_dir = "./outputs/samples/" # Örneğin, inference.py tarafından kullanılan kayıt dizini
list_of_files = glob.glob(f'{save_dir}/*')
if list_of_files:
latest_file = max(list_of_files, key=os.path.getctime)
return latest_file
else:
print("No files found in the output directory.")
return None
# Clean up the temporary files
os.remove(temp_file.name)
os.remove(prompt_file.name)
def main():
gr.Interface(
fn=run_inference,
inputs=[
gr.Dropdown(choices=[
"OpenSora-v1-16x256x256.pth",
"OpenSora-v1-HQ-16x256x256.pth",
"OpenSora-v1-HQ-16x512x512.pth"
],
value="OpenSora-v1-16x256x256.pth",
label="Model Selection"),
gr.Textbox(label="Prompt Text", value="iron man riding a skateboard in new york city")
],
outputs=gr.Video(label="Output Video"),
title="Open-Sora Inference",
description="Run Open-Sora Inference with Custom Parameters",
examples=[["OpenSora-v1-16x256x256.pth", "iron man riding a skateboard in new york city"]
# ["OpenSora-v1-16x256x256.pth", "a man is skiing down a snowy mountain. a drone shot from above. an avalanche is chasing him from behind."],
# ["OpenSora-v1-16x256x256.pth", "Extreme close up of a 24 year old woman’s eye blinking, standing in Marrakech during magic hour, cinematic film shot in 70mm, depth of field, vivid colors, cinematic"],
# ["OpenSora-v1-16x256x256.pth", "A gorgeously rendered papercraft world of a coral reef, rife with colorful fish and sea creatures."],
# ["OpenSora-v1-16x256x256.pth", "A close up view of a glass sphere that has a zen garden within it. There is a small dwarf in the sphere who is raking the zen garden and creating patterns in the sand."],
# ["OpenSora-v1-16x256x256.pth", "A petri dish with a bamboo forest growing within it that has tiny red pandas running around."],
# ["OpenSora-v1-16x256x256.pth", "3D animation of a small, round, fluffy creature with big, expressive eyes explores a vibrant, enchanted forest. The creature, a whimsical blend of a rabbit and a squirrel, has soft blue fur and a bushy, striped tail. It hops along a sparkling stream, its eyes wide with wonder. The forest is alive with magical elements: flowers that glow and change colors, trees with leaves in shades of purple and silver, and small floating lights that resemble fireflies. The creature stops to interact playfully with a group of tiny, fairy-like beings dancing around a mushroom ring. The creature looks up in awe at a large, glowing tree that seems to be the heart of the forest."],
# ["OpenSora-v1-16x256x256.pth", "a ferrari driving in a snowy road."]
],
article = """
# Examples
| Model | Description | Video Player Embedding |
|------------------------------|----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|
| OpenSora-v1-HQ-16x256x256.pth | Iron Man riding a skateboard in New York City | ![ironman](https://github.com/sandeshrajbhandari/open-sora-examples/assets/12326258/8173e37f-6405-44f3-aaaa-fafc88187933) |
| OpenSora-v1-16x256x256.pth | A man is skiing down a snowy mountain. A drone shot from above. An avalanche is chasing him from behind. | ![skiing](https://github.com/sandeshrajbhandari/open-sora-examples/assets/12326258/d2cab73a-a77e-4e0b-a80e-668e252b6b6a) |
| OpenSora-v1-16x256x256.pth | Extreme close-up of a 24-year-old woman’s eye blinking, standing in Marrakech during magic hour, cinematic film shot in 70mm, depth of field, vivid colors, cinematic | ![woman](https://github.com/sandeshrajbhandari/open-sora-examples/assets/12326258/38322939-f7bf-4f72-8a5e-ccc427970afc) |
"""
).launch()
if __name__ == "__main__":
main()