Spaces:
Sleeping
Sleeping
Sandaruth
commited on
Commit
·
ffa8147
1
Parent(s):
ffad717
update llm
Browse files
model.py
CHANGED
@@ -13,9 +13,16 @@ os.environ["OPENAI_API_KEY"] = OPENAI_API_KEY
|
|
13 |
|
14 |
from langchain_openai import ChatOpenAI
|
15 |
|
16 |
-
|
17 |
|
18 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
## Create embeddings and splitter
|
21 |
|
@@ -47,6 +54,7 @@ splitter = RecursiveCharacterTextSplitter(
|
|
47 |
from langchain_community.vectorstores import FAISS
|
48 |
|
49 |
persits_directory="./faiss_Test02_500_C_BGE_large"
|
|
|
50 |
|
51 |
vectorstore= FAISS.load_local(persits_directory, embedding)
|
52 |
|
@@ -67,6 +75,8 @@ qa_template = ("""
|
|
67 |
if context is not enough to answer the question, ask for more information.
|
68 |
if context is not related to the question, say I dont know.
|
69 |
|
|
|
|
|
70 |
each answer Must start with code word ATrad Ai(QA):
|
71 |
|
72 |
Question: {question}
|
@@ -82,19 +92,21 @@ qa_template2 = ("""
|
|
82 |
Please provide me with any questions or concerns you have regarding the ATrad Application.
|
83 |
If you're unsure about something or need more information, feel free to ask.
|
84 |
|
|
|
|
|
85 |
Question: {question}
|
86 |
|
87 |
ATrad Ai(QA): Let me think about it...""")
|
88 |
|
89 |
|
90 |
-
QA_PROMPT = PromptTemplate(input_variables=["context", "question"],template=
|
91 |
|
92 |
|
93 |
# Chain for Web
|
94 |
from langchain.chains import RetrievalQA
|
95 |
|
96 |
Web_qa = RetrievalQA.from_chain_type(
|
97 |
-
llm=
|
98 |
chain_type="stuff",
|
99 |
retriever = vectorstore.as_retriever(search_kwargs={"k": 4}),
|
100 |
return_source_documents= True,
|
|
|
13 |
|
14 |
from langchain_openai import ChatOpenAI
|
15 |
|
16 |
+
llm_OpenAi = ChatOpenAI(model="gpt-3.5-turbo", temperature=0,)
|
17 |
|
18 |
|
19 |
+
from langchain.chat_models import ChatAnyscale
|
20 |
+
|
21 |
+
ANYSCALE_ENDPOINT_TOKEN=os.environ.get("ANYSCALE_ENDPOINT_TOKEN")
|
22 |
+
anyscale_api_key =ANYSCALE_ENDPOINT_TOKEN
|
23 |
+
|
24 |
+
llm=ChatAnyscale(anyscale_api_key=anyscale_api_key,temperature=0, model_name='mistralai/Mistral-7B-Instruct-v0.1', streaming=False)
|
25 |
+
|
26 |
|
27 |
## Create embeddings and splitter
|
28 |
|
|
|
54 |
from langchain_community.vectorstores import FAISS
|
55 |
|
56 |
persits_directory="./faiss_Test02_500_C_BGE_large"
|
57 |
+
# persits_directory="./faiss_V03_C500_BGE_large-final"
|
58 |
|
59 |
vectorstore= FAISS.load_local(persits_directory, embedding)
|
60 |
|
|
|
75 |
if context is not enough to answer the question, ask for more information.
|
76 |
if context is not related to the question, say I dont know.
|
77 |
|
78 |
+
give the answer with very clear structure and clear language.
|
79 |
+
|
80 |
each answer Must start with code word ATrad Ai(QA):
|
81 |
|
82 |
Question: {question}
|
|
|
92 |
Please provide me with any questions or concerns you have regarding the ATrad Application.
|
93 |
If you're unsure about something or need more information, feel free to ask.
|
94 |
|
95 |
+
each answer Must start with code word ATrad Ai(QA):
|
96 |
+
|
97 |
Question: {question}
|
98 |
|
99 |
ATrad Ai(QA): Let me think about it...""")
|
100 |
|
101 |
|
102 |
+
QA_PROMPT = PromptTemplate(input_variables=["context", "question"],template=qa_template,)
|
103 |
|
104 |
|
105 |
# Chain for Web
|
106 |
from langchain.chains import RetrievalQA
|
107 |
|
108 |
Web_qa = RetrievalQA.from_chain_type(
|
109 |
+
llm=llm_OpenAi,
|
110 |
chain_type="stuff",
|
111 |
retriever = vectorstore.as_retriever(search_kwargs={"k": 4}),
|
112 |
return_source_documents= True,
|