Spaces:
Sleeping
Sleeping
Sandaruth
commited on
Commit
·
fb208af
1
Parent(s):
2ffda8f
multi query
Browse files- MultiQueryRetriever.py +216 -0
- Retrieval.py +1 -2
MultiQueryRetriever.py
ADDED
@@ -0,0 +1,216 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import asyncio
|
2 |
+
import logging
|
3 |
+
from typing import List, Optional, Sequence
|
4 |
+
|
5 |
+
from langchain_core.callbacks import (
|
6 |
+
AsyncCallbackManagerForRetrieverRun,
|
7 |
+
CallbackManagerForRetrieverRun,
|
8 |
+
)
|
9 |
+
from langchain_core.documents import Document
|
10 |
+
from langchain_core.language_models import BaseLanguageModel
|
11 |
+
from langchain_core.output_parsers import BaseOutputParser
|
12 |
+
from langchain_core.prompts.prompt import PromptTemplate
|
13 |
+
from langchain_core.retrievers import BaseRetriever
|
14 |
+
|
15 |
+
from langchain.chains.llm import LLMChain
|
16 |
+
|
17 |
+
logger = logging.getLogger(__name__)
|
18 |
+
|
19 |
+
|
20 |
+
class LineListOutputParser(BaseOutputParser[List[str]]):
|
21 |
+
"""Output parser for a list of lines."""
|
22 |
+
|
23 |
+
def parse(self, text: str) -> List[str]:
|
24 |
+
lines = text.strip().split("\n")
|
25 |
+
return lines
|
26 |
+
|
27 |
+
|
28 |
+
# Default prompt
|
29 |
+
DEFAULT_QUERY_PROMPT = PromptTemplate(
|
30 |
+
input_variables=["question"],
|
31 |
+
template="""You are an AI language model assistant. Your task is
|
32 |
+
to generate 3 different versions of the given user
|
33 |
+
question to retrieve relevant documents from a vector database.
|
34 |
+
By generating multiple perspectives on the user question,
|
35 |
+
your goal is to help the user overcome some of the limitations
|
36 |
+
of distance-based similarity search. Provide these alternative
|
37 |
+
questions separated by newlines. Original question: {question}""",
|
38 |
+
)
|
39 |
+
|
40 |
+
|
41 |
+
def _unique_documents(documents: Sequence[Document]) -> List[Document]:
|
42 |
+
return [doc for i, doc in enumerate(documents) if doc not in documents[:i]][:4]
|
43 |
+
|
44 |
+
|
45 |
+
class MultiQueryRetriever(BaseRetriever):
|
46 |
+
"""Given a query, use an LLM to write a set of queries.
|
47 |
+
|
48 |
+
Retrieve docs for each query. Return the unique union of all retrieved docs.
|
49 |
+
"""
|
50 |
+
|
51 |
+
retriever: BaseRetriever
|
52 |
+
llm_chain: LLMChain
|
53 |
+
verbose: bool = True
|
54 |
+
parser_key: str = "lines"
|
55 |
+
"""DEPRECATED. parser_key is no longer used and should not be specified."""
|
56 |
+
include_original: bool = False
|
57 |
+
"""Whether to include the original query in the list of generated queries."""
|
58 |
+
|
59 |
+
@classmethod
|
60 |
+
def from_llm(
|
61 |
+
cls,
|
62 |
+
retriever: BaseRetriever,
|
63 |
+
llm: BaseLanguageModel,
|
64 |
+
prompt: PromptTemplate = DEFAULT_QUERY_PROMPT,
|
65 |
+
parser_key: Optional[str] = None,
|
66 |
+
include_original: bool = False,
|
67 |
+
) -> "MultiQueryRetriever":
|
68 |
+
"""Initialize from llm using default template.
|
69 |
+
|
70 |
+
Args:
|
71 |
+
retriever: retriever to query documents from
|
72 |
+
llm: llm for query generation using DEFAULT_QUERY_PROMPT
|
73 |
+
include_original: Whether to include the original query in the list of
|
74 |
+
generated queries.
|
75 |
+
|
76 |
+
Returns:
|
77 |
+
MultiQueryRetriever
|
78 |
+
"""
|
79 |
+
output_parser = LineListOutputParser()
|
80 |
+
llm_chain = LLMChain(llm=llm, prompt=prompt, output_parser=output_parser)
|
81 |
+
return cls(
|
82 |
+
retriever=retriever,
|
83 |
+
llm_chain=llm_chain,
|
84 |
+
include_original=include_original,
|
85 |
+
)
|
86 |
+
|
87 |
+
async def _aget_relevant_documents(
|
88 |
+
self,
|
89 |
+
query: str,
|
90 |
+
*,
|
91 |
+
run_manager: AsyncCallbackManagerForRetrieverRun,
|
92 |
+
) -> List[Document]:
|
93 |
+
"""Get relevant documents given a user query.
|
94 |
+
|
95 |
+
Args:
|
96 |
+
question: user query
|
97 |
+
|
98 |
+
Returns:
|
99 |
+
Unique union of relevant documents from all generated queries
|
100 |
+
"""
|
101 |
+
queries = await self.agenerate_queries(query, run_manager)
|
102 |
+
if self.include_original:
|
103 |
+
queries.append(query)
|
104 |
+
documents = await self.aretrieve_documents(queries, run_manager)
|
105 |
+
return self.unique_union(documents)
|
106 |
+
|
107 |
+
async def agenerate_queries(
|
108 |
+
self, question: str, run_manager: AsyncCallbackManagerForRetrieverRun
|
109 |
+
) -> List[str]:
|
110 |
+
"""Generate queries based upon user input.
|
111 |
+
|
112 |
+
Args:
|
113 |
+
question: user query
|
114 |
+
|
115 |
+
Returns:
|
116 |
+
List of LLM generated queries that are similar to the user input
|
117 |
+
"""
|
118 |
+
response = await self.llm_chain.acall(
|
119 |
+
inputs={"question": question}, callbacks=run_manager.get_child()
|
120 |
+
)
|
121 |
+
lines = response["text"]
|
122 |
+
if self.verbose:
|
123 |
+
logger.info(f"Generated queries: {lines}")
|
124 |
+
return lines
|
125 |
+
|
126 |
+
async def aretrieve_documents(
|
127 |
+
self, queries: List[str], run_manager: AsyncCallbackManagerForRetrieverRun
|
128 |
+
) -> List[Document]:
|
129 |
+
"""Run all LLM generated queries.
|
130 |
+
|
131 |
+
Args:
|
132 |
+
queries: query list
|
133 |
+
|
134 |
+
Returns:
|
135 |
+
List of retrieved Documents
|
136 |
+
"""
|
137 |
+
document_lists = await asyncio.gather(
|
138 |
+
*(
|
139 |
+
self.retriever.aget_relevant_documents(
|
140 |
+
query, callbacks=run_manager.get_child()
|
141 |
+
)
|
142 |
+
for query in queries
|
143 |
+
)
|
144 |
+
)
|
145 |
+
return [doc for docs in document_lists for doc in docs]
|
146 |
+
|
147 |
+
def _get_relevant_documents(
|
148 |
+
self,
|
149 |
+
query: str,
|
150 |
+
*,
|
151 |
+
run_manager: CallbackManagerForRetrieverRun,
|
152 |
+
) -> List[Document]:
|
153 |
+
"""Get relevant documents given a user query.
|
154 |
+
|
155 |
+
Args:
|
156 |
+
question: user query
|
157 |
+
|
158 |
+
Returns:
|
159 |
+
Unique union of relevant documents from all generated queries
|
160 |
+
"""
|
161 |
+
queries = self.generate_queries(query, run_manager)
|
162 |
+
if self.include_original:
|
163 |
+
queries.append(query)
|
164 |
+
documents = self.retrieve_documents(queries, run_manager)
|
165 |
+
return self.unique_union(documents)
|
166 |
+
|
167 |
+
def generate_queries(
|
168 |
+
self, question: str, run_manager: CallbackManagerForRetrieverRun
|
169 |
+
) -> List[str]:
|
170 |
+
"""Generate queries based upon user input.
|
171 |
+
|
172 |
+
Args:
|
173 |
+
question: user query
|
174 |
+
|
175 |
+
Returns:
|
176 |
+
List of LLM generated queries that are similar to the user input
|
177 |
+
"""
|
178 |
+
response = self.llm_chain(
|
179 |
+
{"question": question}, callbacks=run_manager.get_child()
|
180 |
+
)
|
181 |
+
lines = response["text"]
|
182 |
+
if self.verbose:
|
183 |
+
logger.info(f"Generated queries: {lines}")
|
184 |
+
return lines
|
185 |
+
|
186 |
+
def retrieve_documents(
|
187 |
+
self, queries: List[str], run_manager: CallbackManagerForRetrieverRun
|
188 |
+
) -> List[Document]:
|
189 |
+
"""Run all LLM generated queries.
|
190 |
+
|
191 |
+
Args:
|
192 |
+
queries: query list
|
193 |
+
|
194 |
+
Returns:
|
195 |
+
List of retrieved Documents
|
196 |
+
"""
|
197 |
+
documents = []
|
198 |
+
for query in queries:
|
199 |
+
docs = self.retriever.get_relevant_documents(
|
200 |
+
query, callbacks=run_manager.get_child()
|
201 |
+
)
|
202 |
+
documents.extend(docs)
|
203 |
+
print("retrieve documents--", len(documents))
|
204 |
+
return documents
|
205 |
+
|
206 |
+
def unique_union(self, documents: List[Document]) -> List[Document]:
|
207 |
+
"""Get unique Documents.
|
208 |
+
|
209 |
+
Args:
|
210 |
+
documents: List of retrieved Documents
|
211 |
+
|
212 |
+
Returns:
|
213 |
+
List of unique retrieved Documents
|
214 |
+
"""
|
215 |
+
print("unique union--", len(documents))
|
216 |
+
return _unique_documents(documents)
|
Retrieval.py
CHANGED
@@ -16,8 +16,7 @@ bsic_chain = RetrievalQA.from_chain_type(
|
|
16 |
|
17 |
|
18 |
|
19 |
-
from
|
20 |
-
# from kk import MultiQueryRetriever
|
21 |
|
22 |
retriever_from_llm = MultiQueryRetriever.from_llm(
|
23 |
retriever=vectorstore.as_retriever(search_kwargs={"k": 3}),
|
|
|
16 |
|
17 |
|
18 |
|
19 |
+
from MultiQueryRetriever import MultiQueryRetriever
|
|
|
20 |
|
21 |
retriever_from_llm = MultiQueryRetriever.from_llm(
|
22 |
retriever=vectorstore.as_retriever(search_kwargs={"k": 3}),
|