Spaces:
Sleeping
Sleeping
import os | |
from dotenv import load_dotenv | |
from prompts import qa_template_V0, qa_template_V1, qa_template_V2 | |
# Load environment variables from .env file | |
load_dotenv() | |
# Access the value of OPENAI_API_KEY | |
OPENAI_API_KEY = os.environ.get("OPENAI_API_KEY") | |
os.environ["OPENAI_API_KEY"] = OPENAI_API_KEY | |
from langchain_openai import ChatOpenAI | |
llm_OpenAi = ChatOpenAI(model="gpt-3.5-turbo", temperature=0,) | |
from langchain.chat_models import ChatAnyscale | |
ANYSCALE_ENDPOINT_TOKEN=os.environ.get("ANYSCALE_ENDPOINT_TOKEN") | |
anyscale_api_key =ANYSCALE_ENDPOINT_TOKEN | |
llm=ChatAnyscale(anyscale_api_key=anyscale_api_key,temperature=0, model_name='mistralai/Mistral-7B-Instruct-v0.1', streaming=False) | |
## Create embeddings and splitter | |
from langchain.embeddings import HuggingFaceBgeEmbeddings | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
# Create Embeddings | |
model_name = "BAAI/bge-large-en" | |
embedding = HuggingFaceBgeEmbeddings( | |
model_name = model_name, | |
# model_kwargs = {'device':'cuda'}, | |
encode_kwargs = {'normalize_embeddings': True} | |
) | |
# Create Splitter | |
splitter = RecursiveCharacterTextSplitter( | |
chunk_size=1000, | |
chunk_overlap=100, | |
) | |
from langchain_community.vectorstores import FAISS | |
# persits_directory="./faiss_Test02_500_C_BGE_large" | |
# persits_directory="./faiss_V03_C500_BGE_large-final" | |
# persits_directory="./faiss_V03_C1000_BGE_large-final" | |
# persits_directory="./faiss_V04_C500_BGE_large-final" | |
persits_directory="./faiss_V04_C500_BGE_large_web_doc_with_split-final" | |
vectorstore= FAISS.load_local(persits_directory, embedding) | |
# Define a custom prompt for Unser manual | |
from langchain.prompts import PromptTemplate | |
QA_PROMPT = PromptTemplate(input_variables=["context", "question"],template=qa_template_V2,) | |
# Chain for Web | |
from langchain.chains import RetrievalQA | |
Web_qa = RetrievalQA.from_chain_type( | |
llm=llm_OpenAi, | |
chain_type="stuff", | |
retriever = vectorstore.as_retriever(search_kwargs={"k": 4}), | |
return_source_documents= True, | |
input_key="question", | |
chain_type_kwargs={"prompt": QA_PROMPT}, | |
) | |