Spaces:
Sleeping
Sleeping
no message
Browse files
app.py
CHANGED
@@ -64,7 +64,7 @@ def classify_full_dataset(shosen_dataset_name, chosen_model_name):
|
|
64 |
|
65 |
#dataset
|
66 |
dataset = load_dataset(shosen_dataset_name,"testedata_readme")
|
67 |
-
with
|
68 |
#Image teste load
|
69 |
image_object = dataset['pasta'][0]["image"]
|
70 |
st.image(image_object, caption="Uploaded Image", width=300)
|
@@ -72,18 +72,18 @@ def classify_full_dataset(shosen_dataset_name, chosen_model_name):
|
|
72 |
|
73 |
#modle instance
|
74 |
classifier_pipeline = pipeline('image-classification', model=chosen_model_name)
|
75 |
-
|
76 |
|
77 |
#classification
|
78 |
classification_result = classifier_pipeline(image_object)
|
79 |
-
|
80 |
-
|
81 |
#classification_array.append(classification_result)
|
82 |
|
83 |
#save classification
|
84 |
|
85 |
image_count += 1
|
86 |
-
|
87 |
|
88 |
return image_count
|
89 |
|
@@ -105,10 +105,10 @@ def main():
|
|
105 |
|
106 |
make_template()
|
107 |
|
108 |
-
with CONTAINER_TOP:
|
109 |
-
|
110 |
|
111 |
-
|
112 |
# TODO Restart or reset your app
|
113 |
# if st.button("Restart"):
|
114 |
# # Code to restart or reset your app goes here
|
@@ -116,7 +116,7 @@ def main():
|
|
116 |
# subprocess.call(["shutdown", "-r", "-t", "0"])
|
117 |
|
118 |
#with CONTAINER_BODY:
|
119 |
-
with
|
120 |
st.markdown("This app uses several 🤗 models to classify images stored in 🤗 datasets.")
|
121 |
st.write("Soon we will have a dataset template")
|
122 |
|
@@ -137,9 +137,9 @@ def main():
|
|
137 |
|
138 |
#classification_array =[]
|
139 |
classification_result = classify_full_dataset(shosen_dataset_name, chosen_model_name)
|
140 |
-
|
141 |
#classification_array.append(classification_result)
|
142 |
#st.write("# FLAG 6")
|
143 |
-
#st.write(classification_array)
|
144 |
if __name__ == "__main__":
|
145 |
main()
|
|
|
64 |
|
65 |
#dataset
|
66 |
dataset = load_dataset(shosen_dataset_name,"testedata_readme")
|
67 |
+
with COLS[1]:
|
68 |
#Image teste load
|
69 |
image_object = dataset['pasta'][0]["image"]
|
70 |
st.image(image_object, caption="Uploaded Image", width=300)
|
|
|
72 |
|
73 |
#modle instance
|
74 |
classifier_pipeline = pipeline('image-classification', model=chosen_model_name)
|
75 |
+
COLS[1].write("### FLAG 4")
|
76 |
|
77 |
#classification
|
78 |
classification_result = classifier_pipeline(image_object)
|
79 |
+
COLS[1].write(classification_result)
|
80 |
+
COLS[1].write("### FLAG 5")
|
81 |
#classification_array.append(classification_result)
|
82 |
|
83 |
#save classification
|
84 |
|
85 |
image_count += 1
|
86 |
+
COLS[1].write(f"Image count: {image_count}")
|
87 |
|
88 |
return image_count
|
89 |
|
|
|
105 |
|
106 |
make_template()
|
107 |
|
108 |
+
# with CONTAINER_TOP:
|
109 |
+
# st.write("# Bulk Image Classification DEMO")
|
110 |
|
111 |
+
COLS[0].write("# Bulk Image Classification DEMO")
|
112 |
# TODO Restart or reset your app
|
113 |
# if st.button("Restart"):
|
114 |
# # Code to restart or reset your app goes here
|
|
|
116 |
# subprocess.call(["shutdown", "-r", "-t", "0"])
|
117 |
|
118 |
#with CONTAINER_BODY:
|
119 |
+
with COLS[0]:
|
120 |
st.markdown("This app uses several 🤗 models to classify images stored in 🤗 datasets.")
|
121 |
st.write("Soon we will have a dataset template")
|
122 |
|
|
|
137 |
|
138 |
#classification_array =[]
|
139 |
classification_result = classify_full_dataset(shosen_dataset_name, chosen_model_name)
|
140 |
+
COLS[0].write(f"Classification result: {classification_result}")
|
141 |
#classification_array.append(classification_result)
|
142 |
#st.write("# FLAG 6")
|
143 |
+
#st.write(classification_array)
|
144 |
if __name__ == "__main__":
|
145 |
main()
|