Spaces:
Running
Running
sanchit-gandhi
commited on
Commit
·
1f63fcf
1
Parent(s):
4ce538c
Update app.py
Browse files
app.py
CHANGED
@@ -1,7 +1,11 @@
|
|
1 |
import base64
|
|
|
|
|
2 |
|
3 |
import gradio as gr
|
|
|
4 |
import requests
|
|
|
5 |
from transformers.models.whisper.tokenization_whisper import TO_LANGUAGE_CODE
|
6 |
from transformers.pipelines.audio_utils import ffmpeg_read
|
7 |
|
@@ -9,14 +13,15 @@ from transformers.pipelines.audio_utils import ffmpeg_read
|
|
9 |
title = "Whisper JAX: The Fastest Whisper API ⚡️"
|
10 |
|
11 |
description = "Whisper JAX is an optimised implementation of the [Whisper model](https://huggingface.co/openai/whisper-large-v2) by OpenAI. It runs on JAX with a TPU v4-8 in the backend. Compared to PyTorch on an A100 GPU, it is over **12x** faster, making it the fastest Whisper API available."
|
12 |
-
# description += "\nYou can submit requests to Whisper JAX through this Gradio Demo, or directly through API calls (see below). This notebook demonstrates how you can run the Whisper JAX model yourself on a TPU v2-8 in a Google Colab: TODO."
|
13 |
|
14 |
API_URL = "https://whisper-jax.ngrok.io/generate/"
|
15 |
|
16 |
article = "Whisper large-v2 model by OpenAI. Backend running JAX on a TPU v4-8 through the generous support of the [TRC](https://sites.research.google/trc/about/) programme. Whisper JAX code and Gradio demo by 🤗 Hugging Face."
|
17 |
|
18 |
language_names = sorted(TO_LANGUAGE_CODE.keys())
|
19 |
-
|
|
|
|
|
20 |
|
21 |
|
22 |
def query(payload):
|
@@ -46,89 +51,111 @@ def inference(inputs, language=None, task=None, return_timestamps=False):
|
|
46 |
return text, timestamps
|
47 |
|
48 |
|
49 |
-
def
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
|
57 |
-
|
58 |
-
|
59 |
|
60 |
-
|
61 |
|
62 |
-
|
63 |
-
|
64 |
|
65 |
-
|
66 |
-
|
67 |
|
68 |
-
|
69 |
|
70 |
-
|
71 |
|
|
|
|
|
|
|
72 |
|
73 |
-
def _return_yt_html_embed(yt_url):
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
)
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
audio = gr.Interface(
|
91 |
-
fn=transcribe_audio,
|
92 |
-
inputs=[
|
93 |
-
gr.inputs.Audio(source="microphone", optional=True, type="filepath"),
|
94 |
-
gr.inputs.Audio(source="upload", optional=True, type="filepath"),
|
95 |
-
gr.inputs.Radio(["transcribe", "translate"], label="Task", default="transcribe"),
|
96 |
-
gr.inputs.Checkbox(default=False, label="Return timestamps"),
|
97 |
-
],
|
98 |
-
outputs=[
|
99 |
-
gr.outputs.Textbox(label="Transcription"),
|
100 |
-
gr.outputs.Textbox(label="Timestamps"),
|
101 |
-
],
|
102 |
-
allow_flagging="never",
|
103 |
-
title=title,
|
104 |
-
description=description,
|
105 |
-
article=article,
|
106 |
-
)
|
107 |
-
|
108 |
-
youtube = gr.Interface(
|
109 |
-
fn=transcribe_youtube,
|
110 |
-
inputs=[
|
111 |
-
gr.inputs.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL"),
|
112 |
-
gr.inputs.Radio(["transcribe", "translate"], label="Task", default="transcribe"),
|
113 |
-
gr.inputs.Checkbox(default=False, label="Return timestamps"),
|
114 |
-
],
|
115 |
-
outputs=[
|
116 |
-
gr.outputs.HTML(label="Video"),
|
117 |
-
gr.outputs.Textbox(label="Transcription"),
|
118 |
-
gr.outputs.Textbox(label="Timestamps"),
|
119 |
-
],
|
120 |
-
allow_flagging="never",
|
121 |
-
title=title,
|
122 |
-
examples=[["https://www.youtube.com/watch?v=m8u-18Q0s7I", "transcribe", False]],
|
123 |
-
cache_examples=False,
|
124 |
-
description=description,
|
125 |
-
article=article,
|
126 |
-
)
|
127 |
-
|
128 |
-
demo = gr.Blocks()
|
129 |
-
|
130 |
-
with demo:
|
131 |
-
gr.TabbedInterface([audio, youtube], ["Transcribe Audio", "Transcribe YouTube"])
|
132 |
-
|
133 |
-
demo.queue()
|
134 |
-
demo.launch()
|
|
|
1 |
import base64
|
2 |
+
from functools import partial
|
3 |
+
from multiprocessing import Pool
|
4 |
|
5 |
import gradio as gr
|
6 |
+
import numpy as np
|
7 |
import requests
|
8 |
+
from processing_whisper import WhisperPrePostProcessor
|
9 |
from transformers.models.whisper.tokenization_whisper import TO_LANGUAGE_CODE
|
10 |
from transformers.pipelines.audio_utils import ffmpeg_read
|
11 |
|
|
|
13 |
title = "Whisper JAX: The Fastest Whisper API ⚡️"
|
14 |
|
15 |
description = "Whisper JAX is an optimised implementation of the [Whisper model](https://huggingface.co/openai/whisper-large-v2) by OpenAI. It runs on JAX with a TPU v4-8 in the backend. Compared to PyTorch on an A100 GPU, it is over **12x** faster, making it the fastest Whisper API available."
|
|
|
16 |
|
17 |
API_URL = "https://whisper-jax.ngrok.io/generate/"
|
18 |
|
19 |
article = "Whisper large-v2 model by OpenAI. Backend running JAX on a TPU v4-8 through the generous support of the [TRC](https://sites.research.google/trc/about/) programme. Whisper JAX code and Gradio demo by 🤗 Hugging Face."
|
20 |
|
21 |
language_names = sorted(TO_LANGUAGE_CODE.keys())
|
22 |
+
CHUNK_LENGTH_S = 30
|
23 |
+
BATCH_SIZE = 16
|
24 |
+
NUM_PROC = 16
|
25 |
|
26 |
|
27 |
def query(payload):
|
|
|
51 |
return text, timestamps
|
52 |
|
53 |
|
54 |
+
def chunked_query(payload):
|
55 |
+
response = requests.post("https://whisper-jax.ngrok.io/generate_from_features", json=payload)
|
56 |
+
return response.json()
|
57 |
+
|
58 |
+
|
59 |
+
def forward(batch, task=None, return_timestamps=False):
|
60 |
+
feature_shape = batch["input_features"].shape
|
61 |
+
batch["input_features"] = base64.b64encode(batch["input_features"].tobytes()).decode()
|
62 |
+
outputs = chunked_query(
|
63 |
+
{"batch": batch, "task": task, "return_timestamps": return_timestamps, "feature_shape": feature_shape}
|
64 |
+
)
|
65 |
+
outputs["tokens"] = np.asarray(outputs["tokens"])
|
66 |
+
return outputs
|
67 |
+
|
68 |
+
|
69 |
+
if __name__ == "__main__":
|
70 |
+
processor = WhisperPrePostProcessor.from_pretrained("openai/whisper-large-v2")
|
71 |
+
pool = Pool(NUM_PROC)
|
72 |
+
|
73 |
+
def transcribe_chunked_audio(microphone, file_upload, task, return_timestamps):
|
74 |
+
warn_output = ""
|
75 |
+
if (microphone is not None) and (file_upload is not None):
|
76 |
+
warn_output = (
|
77 |
+
"WARNING: You've uploaded an audio file and used the microphone. "
|
78 |
+
"The recorded file from the microphone will be used and the uploaded audio will be discarded.\n"
|
79 |
+
)
|
80 |
|
81 |
+
elif (microphone is None) and (file_upload is None):
|
82 |
+
return "ERROR: You have to either use the microphone or upload an audio file"
|
83 |
|
84 |
+
inputs = microphone if microphone is not None else file_upload
|
85 |
|
86 |
+
with open(inputs, "rb") as f:
|
87 |
+
inputs = f.read()
|
88 |
|
89 |
+
inputs = ffmpeg_read(inputs, processor.feature_extractor.sampling_rate)
|
90 |
+
inputs = {"array": inputs, "sampling_rate": processor.feature_extractor.sampling_rate}
|
91 |
|
92 |
+
dataloader = processor.preprocess_batch(inputs, chunk_length_s=CHUNK_LENGTH_S, batch_size=BATCH_SIZE)
|
93 |
|
94 |
+
model_outputs = pool.map(partial(forward, task=task, return_timestamps=return_timestamps), dataloader)
|
95 |
|
96 |
+
post_processed = processor.postprocess(model_outputs, return_timestamps=return_timestamps)
|
97 |
+
timestamps = post_processed.get("chunks")
|
98 |
+
return warn_output + post_processed["text"], timestamps
|
99 |
|
100 |
+
def _return_yt_html_embed(yt_url):
|
101 |
+
video_id = yt_url.split("?v=")[-1]
|
102 |
+
HTML_str = (
|
103 |
+
f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe>'
|
104 |
+
" </center>"
|
105 |
+
)
|
106 |
+
return HTML_str
|
107 |
+
|
108 |
+
def transcribe_youtube(yt_url, task, return_timestamps):
|
109 |
+
html_embed_str = _return_yt_html_embed(yt_url)
|
110 |
+
|
111 |
+
text, timestamps = inference(inputs=yt_url, task=task, return_timestamps=return_timestamps)
|
112 |
+
|
113 |
+
return html_embed_str, text, timestamps
|
114 |
+
|
115 |
+
audio_chunked = gr.Interface(
|
116 |
+
fn=transcribe_chunked_audio,
|
117 |
+
inputs=[
|
118 |
+
gr.inputs.Audio(source="microphone", optional=True, type="filepath"),
|
119 |
+
gr.inputs.Audio(source="upload", optional=True, type="filepath"),
|
120 |
+
gr.inputs.Radio(["transcribe", "translate"], label="Task", default="transcribe"),
|
121 |
+
gr.inputs.Checkbox(default=False, label="Return timestamps"),
|
122 |
+
],
|
123 |
+
outputs=[
|
124 |
+
gr.outputs.Textbox(label="Transcription"),
|
125 |
+
gr.outputs.Textbox(label="Timestamps"),
|
126 |
+
],
|
127 |
+
allow_flagging="never",
|
128 |
+
title=title,
|
129 |
+
description=description,
|
130 |
+
article=article,
|
131 |
+
)
|
132 |
+
|
133 |
+
youtube = gr.Interface(
|
134 |
+
fn=transcribe_youtube,
|
135 |
+
inputs=[
|
136 |
+
gr.inputs.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL"),
|
137 |
+
gr.inputs.Radio(["transcribe", "translate"], label="Task", default="transcribe"),
|
138 |
+
gr.inputs.Checkbox(default=False, label="Return timestamps"),
|
139 |
+
],
|
140 |
+
outputs=[
|
141 |
+
gr.outputs.HTML(label="Video"),
|
142 |
+
gr.outputs.Textbox(label="Transcription"),
|
143 |
+
gr.outputs.Textbox(label="Timestamps"),
|
144 |
+
],
|
145 |
+
allow_flagging="never",
|
146 |
+
title=title,
|
147 |
+
examples=[["https://www.youtube.com/watch?v=m8u-18Q0s7I", "transcribe", False]],
|
148 |
+
cache_examples=False,
|
149 |
+
description=description,
|
150 |
+
article=article,
|
151 |
)
|
152 |
+
|
153 |
+
demo = gr.Blocks()
|
154 |
+
|
155 |
+
with demo:
|
156 |
+
gr.TabbedInterface(
|
157 |
+
[audio_chunked, youtube], ["Transcribe Audio", "Transcribe YouTube"]
|
158 |
+
)
|
159 |
+
|
160 |
+
demo.queue()
|
161 |
+
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|