Spaces:
Runtime error
Runtime error
Commit
·
dbf0e3c
0
Parent(s):
Duplicate from autoevaluate/leaderboards
Browse filesCo-authored-by: Tristan Thrush <Tristan@users.noreply.huggingface.co>
README.md
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: Leaderboards
|
3 |
+
emoji: 📈
|
4 |
+
colorFrom: red
|
5 |
+
colorTo: yellow
|
6 |
+
sdk: streamlit
|
7 |
+
sdk_version: 1.10.0
|
8 |
+
app_file: app.py
|
9 |
+
pinned: false
|
10 |
+
license: apache-2.0
|
11 |
+
duplicated_from: autoevaluate/leaderboards
|
12 |
+
---
|
13 |
+
|
14 |
+
|
15 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces#reference
|
app.py
ADDED
@@ -0,0 +1,316 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import streamlit as st
|
3 |
+
from huggingface_hub import HfApi, hf_hub_download
|
4 |
+
from huggingface_hub.repocard import metadata_load
|
5 |
+
from utils import ascending_metrics, metric_ranges
|
6 |
+
import numpy as np
|
7 |
+
from st_aggrid import AgGrid, GridOptionsBuilder, JsCode
|
8 |
+
from os.path import exists
|
9 |
+
import threading
|
10 |
+
|
11 |
+
st.set_page_config(layout="wide")
|
12 |
+
|
13 |
+
|
14 |
+
def get_model_infos():
|
15 |
+
api = HfApi()
|
16 |
+
model_infos = api.list_models(filter="model-index", cardData=True)
|
17 |
+
return model_infos
|
18 |
+
|
19 |
+
|
20 |
+
def parse_metric_value(value):
|
21 |
+
if isinstance(value, str):
|
22 |
+
"".join(value.split("%"))
|
23 |
+
try:
|
24 |
+
value = float(value)
|
25 |
+
except: # noqa: E722
|
26 |
+
value = None
|
27 |
+
elif isinstance(value, list):
|
28 |
+
if len(value) > 0:
|
29 |
+
value = value[0]
|
30 |
+
else:
|
31 |
+
value = None
|
32 |
+
value = round(value, 4) if isinstance(value, float) else None
|
33 |
+
return value
|
34 |
+
|
35 |
+
|
36 |
+
def parse_metrics_rows(meta, only_verified=False):
|
37 |
+
if not isinstance(meta["model-index"], list) or len(meta["model-index"]) == 0 or "results" not in meta["model-index"][0]:
|
38 |
+
return None
|
39 |
+
for result in meta["model-index"][0]["results"]:
|
40 |
+
if not isinstance(result, dict) or "dataset" not in result or "metrics" not in result or "type" not in result["dataset"]:
|
41 |
+
continue
|
42 |
+
dataset = result["dataset"]["type"]
|
43 |
+
if dataset == "":
|
44 |
+
continue
|
45 |
+
row = {"dataset": dataset, "split": "-unspecified-", "config": "-unspecified-"}
|
46 |
+
if "split" in result["dataset"]:
|
47 |
+
row["split"] = result["dataset"]["split"]
|
48 |
+
if "config" in result["dataset"]:
|
49 |
+
row["config"] = result["dataset"]["config"]
|
50 |
+
no_results = True
|
51 |
+
incorrect_results = False
|
52 |
+
for metric in result["metrics"]:
|
53 |
+
name = metric["type"].lower().strip()
|
54 |
+
|
55 |
+
if name in ("model_id", "dataset", "split", "config", "pipeline_tag", "only_verified"):
|
56 |
+
# Metrics are not allowed to be named "dataset", "split", "config", "pipeline_tag"
|
57 |
+
continue
|
58 |
+
value = parse_metric_value(metric.get("value", None))
|
59 |
+
if value is None:
|
60 |
+
continue
|
61 |
+
if name in row:
|
62 |
+
new_metric_better = value < row[name] if name in ascending_metrics else value > row[name]
|
63 |
+
if name not in row or new_metric_better:
|
64 |
+
# overwrite the metric if the new value is better.
|
65 |
+
|
66 |
+
if only_verified:
|
67 |
+
if "verified" in metric and metric["verified"]:
|
68 |
+
no_results = False
|
69 |
+
row[name] = value
|
70 |
+
if name in metric_ranges:
|
71 |
+
if value < metric_ranges[name][0] or value > metric_ranges[name][1]:
|
72 |
+
incorrect_results = True
|
73 |
+
else:
|
74 |
+
no_results = False
|
75 |
+
row[name] = value
|
76 |
+
if name in metric_ranges:
|
77 |
+
if value < metric_ranges[name][0] or value > metric_ranges[name][1]:
|
78 |
+
incorrect_results = True
|
79 |
+
if no_results or incorrect_results:
|
80 |
+
continue
|
81 |
+
yield row
|
82 |
+
|
83 |
+
@st.cache(ttl=0)
|
84 |
+
def get_data_wrapper():
|
85 |
+
|
86 |
+
def get_data(dataframe=None, verified_dataframe=None):
|
87 |
+
data = []
|
88 |
+
verified_data = []
|
89 |
+
print("getting model infos")
|
90 |
+
model_infos = get_model_infos()
|
91 |
+
print("got model infos")
|
92 |
+
for model_info in model_infos:
|
93 |
+
meta = model_info.cardData
|
94 |
+
if meta is None:
|
95 |
+
continue
|
96 |
+
for row in parse_metrics_rows(meta):
|
97 |
+
if row is None:
|
98 |
+
continue
|
99 |
+
row["model_id"] = model_info.id
|
100 |
+
row["pipeline_tag"] = model_info.pipeline_tag
|
101 |
+
row["only_verified"] = False
|
102 |
+
data.append(row)
|
103 |
+
for row in parse_metrics_rows(meta, only_verified=True):
|
104 |
+
if row is None:
|
105 |
+
continue
|
106 |
+
row["model_id"] = model_info.id
|
107 |
+
row["pipeline_tag"] = model_info.pipeline_tag
|
108 |
+
row["only_verified"] = True
|
109 |
+
data.append(row)
|
110 |
+
dataframe = pd.DataFrame.from_records(data)
|
111 |
+
dataframe.to_pickle("cache.pkl")
|
112 |
+
|
113 |
+
if exists("cache.pkl"):
|
114 |
+
# If we have saved the results previously, call an asynchronous process
|
115 |
+
# to fetch the results and update the saved file. Don't make users wait
|
116 |
+
# while we fetch the new results. Instead, display the old results for
|
117 |
+
# now. The new results should be loaded when this method
|
118 |
+
# is called again.
|
119 |
+
dataframe = pd.read_pickle("cache.pkl")
|
120 |
+
t = threading.Thread(name="get_data procs", target=get_data)
|
121 |
+
t.start()
|
122 |
+
else:
|
123 |
+
# We have to make the users wait during the first startup of this app.
|
124 |
+
get_data()
|
125 |
+
dataframe = pd.read_pickle("cache.pkl")
|
126 |
+
|
127 |
+
return dataframe
|
128 |
+
|
129 |
+
dataframe = get_data_wrapper()
|
130 |
+
|
131 |
+
st.markdown("# 🤗 Leaderboards")
|
132 |
+
|
133 |
+
query_params = st.experimental_get_query_params()
|
134 |
+
if "first_query_params" not in st.session_state:
|
135 |
+
st.session_state.first_query_params = query_params
|
136 |
+
first_query_params = st.session_state.first_query_params
|
137 |
+
|
138 |
+
default_task = first_query_params.get("task", [None])[0]
|
139 |
+
default_only_verified = bool(int(first_query_params.get("only_verified", [0])[0]))
|
140 |
+
print(default_only_verified)
|
141 |
+
default_dataset = first_query_params.get("dataset", [None])[0]
|
142 |
+
default_split = first_query_params.get("split", [None])[0]
|
143 |
+
default_config = first_query_params.get("config", [None])[0]
|
144 |
+
default_metric = first_query_params.get("metric", [None])[0]
|
145 |
+
|
146 |
+
only_verified_results = st.sidebar.checkbox(
|
147 |
+
"Filter for Verified Results",
|
148 |
+
value=default_only_verified,
|
149 |
+
help="Select this checkbox if you want to see only results produced by the Hugging Face model evaluator, and no self-reported results."
|
150 |
+
)
|
151 |
+
|
152 |
+
selectable_tasks = list(set(dataframe.pipeline_tag))
|
153 |
+
if None in selectable_tasks:
|
154 |
+
selectable_tasks.remove(None)
|
155 |
+
selectable_tasks.sort(key=lambda name: name.lower())
|
156 |
+
selectable_tasks = ["-any-"] + selectable_tasks
|
157 |
+
|
158 |
+
task = st.sidebar.selectbox(
|
159 |
+
"Task",
|
160 |
+
selectable_tasks,
|
161 |
+
index=(selectable_tasks).index(default_task) if default_task in selectable_tasks else 0,
|
162 |
+
help="Filter the selectable datasets by task. Leave as \"-any-\" to see all selectable datasets."
|
163 |
+
)
|
164 |
+
|
165 |
+
if task != "-any-":
|
166 |
+
dataframe = dataframe[dataframe.pipeline_tag == task]
|
167 |
+
|
168 |
+
selectable_datasets = ["-any-"] + sorted(list(set(dataframe.dataset.tolist())), key=lambda name: name.lower())
|
169 |
+
if "" in selectable_datasets:
|
170 |
+
selectable_datasets.remove("")
|
171 |
+
|
172 |
+
dataset = st.sidebar.selectbox(
|
173 |
+
"Dataset",
|
174 |
+
selectable_datasets,
|
175 |
+
index=selectable_datasets.index(default_dataset) if default_dataset in selectable_datasets else 0,
|
176 |
+
help="Select a dataset to see the leaderboard!"
|
177 |
+
)
|
178 |
+
|
179 |
+
dataframe = dataframe[dataframe.only_verified == only_verified_results]
|
180 |
+
|
181 |
+
current_query_params = {"dataset": [dataset], "only_verified": [int(only_verified_results)], "task": [task]}
|
182 |
+
|
183 |
+
st.experimental_set_query_params(**current_query_params)
|
184 |
+
|
185 |
+
if dataset != "-any-":
|
186 |
+
dataset_df = dataframe[dataframe.dataset == dataset]
|
187 |
+
else:
|
188 |
+
dataset_df = dataframe
|
189 |
+
|
190 |
+
dataset_df = dataset_df.dropna(axis="columns", how="all")
|
191 |
+
|
192 |
+
if len(dataset_df) > 0:
|
193 |
+
selectable_configs = list(set(dataset_df["config"]))
|
194 |
+
selectable_configs.sort(key=lambda name: name.lower())
|
195 |
+
|
196 |
+
if "-unspecified-" in selectable_configs:
|
197 |
+
selectable_configs.remove("-unspecified-")
|
198 |
+
selectable_configs = ["-unspecified-"] + selectable_configs
|
199 |
+
|
200 |
+
if dataset != "-any-":
|
201 |
+
config = st.sidebar.selectbox(
|
202 |
+
"Config",
|
203 |
+
selectable_configs,
|
204 |
+
index=selectable_configs.index(default_config) if default_config in selectable_configs else 0,
|
205 |
+
help="Filter the results on the current leaderboard by the dataset config. Self-reported results might not report the config, which is why \"-unspecified-\" is an option."
|
206 |
+
)
|
207 |
+
dataset_df = dataset_df[dataset_df.config == config]
|
208 |
+
|
209 |
+
selectable_splits = list(set(dataset_df["split"]))
|
210 |
+
selectable_splits.sort(key=lambda name: name.lower())
|
211 |
+
|
212 |
+
if "-unspecified-" in selectable_splits:
|
213 |
+
selectable_splits.remove("-unspecified-")
|
214 |
+
selectable_splits = ["-unspecified-"] + selectable_splits
|
215 |
+
|
216 |
+
split = st.sidebar.selectbox(
|
217 |
+
"Split",
|
218 |
+
selectable_splits,
|
219 |
+
index=selectable_splits.index(default_split) if default_split in selectable_splits else 0,
|
220 |
+
help="Filter the results on the current leaderboard by the dataset split. Self-reported results might not report the split, which is why \"-unspecified-\" is an option."
|
221 |
+
)
|
222 |
+
|
223 |
+
current_query_params.update({"config": [config], "split": [split]})
|
224 |
+
|
225 |
+
st.experimental_set_query_params(**current_query_params)
|
226 |
+
|
227 |
+
dataset_df = dataset_df[dataset_df.split == split]
|
228 |
+
|
229 |
+
not_selectable_metrics = ["model_id", "dataset", "split", "config", "pipeline_tag", "only_verified"]
|
230 |
+
selectable_metrics = list(filter(lambda column: column not in not_selectable_metrics, dataset_df.columns))
|
231 |
+
|
232 |
+
dataset_df = dataset_df.filter(["model_id"] + (["dataset"] if dataset == "-any-" else []) + selectable_metrics)
|
233 |
+
dataset_df = dataset_df.dropna(thresh=2) # Want at least two non-na values (one for model_id and one for a metric).
|
234 |
+
|
235 |
+
sorting_metric = st.sidebar.radio(
|
236 |
+
"Sorting Metric",
|
237 |
+
selectable_metrics,
|
238 |
+
index=selectable_metrics.index(default_metric) if default_metric in selectable_metrics else 0,
|
239 |
+
help="Select the metric to sort the leaderboard by. Click on the metric name in the leaderboard to reverse the sorting order."
|
240 |
+
)
|
241 |
+
|
242 |
+
current_query_params.update({"metric": [sorting_metric]})
|
243 |
+
|
244 |
+
st.experimental_set_query_params(**current_query_params)
|
245 |
+
|
246 |
+
st.markdown(
|
247 |
+
"Please click on the model's name to be redirected to its model card."
|
248 |
+
)
|
249 |
+
|
250 |
+
st.markdown(
|
251 |
+
"Want to beat the leaderboard? Don't see your model here? Simply request an automatic evaluation [here](https://huggingface.co/spaces/autoevaluate/model-evaluator)."
|
252 |
+
)
|
253 |
+
|
254 |
+
st.markdown(
|
255 |
+
"If you do not see your self-reported results here, ensure that your results are in the expected range for all metrics. E.g., accuracy is 0-1, not 0-100."
|
256 |
+
)
|
257 |
+
|
258 |
+
if dataset == "-any-":
|
259 |
+
st.info(
|
260 |
+
"Note: you haven't chosen a dataset, so the leaderboard is showing the best scoring model for a random sample of the datasets available."
|
261 |
+
)
|
262 |
+
|
263 |
+
# Make the default metric appear right after model names and dataset names
|
264 |
+
cols = dataset_df.columns.tolist()
|
265 |
+
cols.remove(sorting_metric)
|
266 |
+
sorting_metric_index = 1 if dataset != "-any-" else 2
|
267 |
+
cols = cols[:sorting_metric_index] + [sorting_metric] + cols[sorting_metric_index:]
|
268 |
+
dataset_df = dataset_df[cols]
|
269 |
+
|
270 |
+
# Sort the leaderboard, giving the sorting metric highest priority and then ordering by other metrics in the case of equal values.
|
271 |
+
dataset_df = dataset_df.sort_values(by=cols[sorting_metric_index:], ascending=[metric in ascending_metrics for metric in cols[sorting_metric_index:]])
|
272 |
+
dataset_df = dataset_df.replace(np.nan, '-')
|
273 |
+
|
274 |
+
# If dataset is "-any-", only show the best model for a random sample of 100 datasets.
|
275 |
+
# Otherwise The leaderboard is way too long and doesn't give the users a feel for all of
|
276 |
+
# the datasets available for a task.
|
277 |
+
if dataset == "-any-":
|
278 |
+
filtered_dataset_df_dict = {column: [] for column in dataset_df.columns}
|
279 |
+
seen_datasets = set()
|
280 |
+
for _, row in dataset_df.iterrows():
|
281 |
+
if row["dataset"] not in seen_datasets:
|
282 |
+
for column in dataset_df.columns:
|
283 |
+
filtered_dataset_df_dict[column].append(row[column])
|
284 |
+
seen_datasets.add(row["dataset"])
|
285 |
+
dataset_df = pd.DataFrame(filtered_dataset_df_dict)
|
286 |
+
dataset_df = dataset_df.sample(min(100, len(dataset_df)))
|
287 |
+
|
288 |
+
# Make the leaderboard
|
289 |
+
gb = GridOptionsBuilder.from_dataframe(dataset_df)
|
290 |
+
gb.configure_default_column(sortable=False)
|
291 |
+
gb.configure_column(
|
292 |
+
"model_id",
|
293 |
+
cellRenderer=JsCode('''function(params) {return '<a target="_blank" href="https://huggingface.co/'+params.value+'">'+params.value+'</a>'}'''),
|
294 |
+
)
|
295 |
+
if dataset == "-any-":
|
296 |
+
gb.configure_column(
|
297 |
+
"dataset",
|
298 |
+
cellRenderer=JsCode('''function(params) {return '<a target="_blank" href="https://huggingface.co/spaces/autoevaluate/leaderboards?dataset='+params.value+'">'+params.value+'</a>'}'''),
|
299 |
+
)
|
300 |
+
for name in selectable_metrics:
|
301 |
+
gb.configure_column(name, type=["numericColumn","numberColumnFilter","customNumericFormat"], precision=4, aggFunc='sum')
|
302 |
+
|
303 |
+
gb.configure_column(
|
304 |
+
sorting_metric,
|
305 |
+
sortable=True,
|
306 |
+
cellStyle=JsCode('''function(params) { return {'backgroundColor': '#FFD21E'}}''')
|
307 |
+
)
|
308 |
+
|
309 |
+
go = gb.build()
|
310 |
+
fit_columns = len(dataset_df.columns) < 10
|
311 |
+
AgGrid(dataset_df, gridOptions=go, height=28*len(dataset_df) + (35 if fit_columns else 41), allow_unsafe_jscode=True, fit_columns_on_grid_load=fit_columns, enable_enterprise_modules=False)
|
312 |
+
|
313 |
+
else:
|
314 |
+
st.markdown(
|
315 |
+
"No " + ("verified" if only_verified_results else "unverified") + " results to display. Try toggling the verified results filter."
|
316 |
+
)
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
pandas==1.5.1
|
2 |
+
huggingface_hub==0.11.1
|
3 |
+
numpy==1.23.4
|
4 |
+
streamlit-aggrid==0.3.3
|
utils.py
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
ascending_metrics = {
|
2 |
+
"wer",
|
3 |
+
"cer",
|
4 |
+
"loss",
|
5 |
+
"mae",
|
6 |
+
"mahalanobis",
|
7 |
+
"mse",
|
8 |
+
"perplexity",
|
9 |
+
"ter",
|
10 |
+
}
|
11 |
+
|
12 |
+
metric_ranges = {
|
13 |
+
"accuracy": (0,1),
|
14 |
+
"precision": (0,1),
|
15 |
+
"recall": (0,1),
|
16 |
+
"macro f1": (0,1),
|
17 |
+
"micro f1": (0,1),
|
18 |
+
"pearson": (-1, 1),
|
19 |
+
"matthews_correlation": (-1, 1),
|
20 |
+
"spearmanr": (-1, 1),
|
21 |
+
"google_bleu": (0, 1),
|
22 |
+
"precision@10": (0, 1),
|
23 |
+
"mae": (0, 1),
|
24 |
+
"mauve": (0, 1),
|
25 |
+
"frontier_integral": (0, 1),
|
26 |
+
"mean_iou": (0, 1),
|
27 |
+
"mean_accuracy": (0, 1),
|
28 |
+
"overall_accuracy": (0, 1),
|
29 |
+
"meteor": (0, 1),
|
30 |
+
"mse": (0, 1),
|
31 |
+
"perplexity": (0, float("inf")),
|
32 |
+
"rogue1": (0, 1),
|
33 |
+
"rogue2": (0, 1),
|
34 |
+
"sari": (0, 100),
|
35 |
+
}
|