degpt / app250106.py
sanbo
update sth. at 2025-01-06 14:25:24
1d746df
import json
import uuid # 用于生成随机用户 ID
import requests
from flask import Flask, request, Response
app = Flask(__name__)
# 全局字典用于保存用户的上下文对话
user_contexts = {}
MAX_HISTORY_LENGTH = 15 # 最大上下文历史长度
def get_models():
models = {
"object": "list",
"data": [
{"id": "Qwen2.5-72B", "object": "model", "created": 0, "owned_by": "Qwen"},
{"id": "Llama3.3-70B", "object": "model", "created": 0, "owned_by": "Nemotron"},
{"id": "Pixtral-124B", "object": "model", "created": 0, "owned_by": "Pixtral"},
{"id": "Qwen2.5-Coder-32B", "object": "model", "created": 0, "owned_by": "Qwen"},
]
}
return json.dumps(models)
# 新的方法,检查model是否有效并返回id
def get_model_by_id(model_id=None):
# 获取所有模型数据
models_data = json.loads(get_models())["data"]
# 提取所有有效的模型ID
valid_ids = [model["id"] for model in models_data]
# 如果model_id无效,默认返回Qwen2.5-72B
if model_id not in valid_ids:
model_id = "Llama3.3-70B"
# 根据model_id获取对应的模型数据
model_data = next((model for model in models_data if model["id"] == model_id), None)
# 返回model_data的id字段
return model_data["id"] if model_data else None
def chat_completion(
user_prompt, user_id: str = None, system_prompt="You are a helpful assistant.", model="Llama3.3-70B",
project="DecentralGPT", stream=False, temperature=0.3, max_tokens=1024, top_p=0.5,
frequency_penalty=0, presence_penalty=0):
"""处理用户请求并保留上下文"""
url = 'https://usa-chat.degpt.ai/api/v0/chat/completion/proxy'
headers = {
'sec-ch-ua-platform': '"macOS"',
'Referer': 'https://www.degpt.ai/',
'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/131.0.0.0 Safari/537.36',
'sec-ch-ua': 'Google Chrome";v="131", "Chromium";v="131", "Not_A Brand";v="24"',
'DNT': '1',
'Content-Type': 'application/json',
'sec-ch-ua-mobile': '?0'
}
# 初始化或更新用户的对话历史
if user_id is not None:
if user_id not in user_contexts:
user_contexts[user_id] = [{"role": "system", "content": system_prompt}]
user_contexts[user_id].append({"role": "user", "content": user_prompt})
# 检查是否需要修剪历史记录,保留 `system` 提示词
while len(user_contexts[user_id]) > MAX_HISTORY_LENGTH:
# 删除最早的用户问题和系统回复,但保留 `system` 提示词
if len(user_contexts[user_id]) > 2:
# 检查删除的条目是否有匹配的系统回复,如果没有,只删除用户输入
if user_contexts[user_id][2]["role"] == "user":
user_contexts[user_id] = [user_contexts[user_id][0]] + user_contexts[user_id][2:]
else:
user_contexts[user_id] = [user_contexts[user_id][0]] + user_contexts[user_id][2:]
else:
break
messages = user_contexts[user_id]
else:
# 如果没有提供 user_id,不保留上下文
messages = [{"role": "system", "content": system_prompt}, {"role": "user", "content": user_prompt}]
payload = {
"model": get_model_by_id(model),
"messages": messages,
"project": project,
"stream": stream,
"temperature": temperature,
"max_tokens": max_tokens,
"top_p": top_p,
"frequency_penalty": frequency_penalty,
"presence_penalty": presence_penalty
}
try:
response = requests.post(url, headers=headers, json=payload)
response.encoding = 'utf-8'
response.raise_for_status()
## print(response.text)
# 获取响应并添加到上下文
response_content = response.json()["choices"][0]["message"]["content"]
# print(
# f"=========== {user_id}:{user_prompt} ====================\r\n请求内容:{messages}\r\n完整响应:{response.text}")
# 将系统的回复添加到用户上下文中
if user_id is not None:
user_contexts[user_id].append({"role": "assistant", "content": response_content})
return response.text
except requests.exceptions.RequestException as e:
print(f"请求失败: {e}")
return "请求失败,请检查网络或参数配置。"
except (KeyError, IndexError) as e:
print(f"解析响应时出错: {e}")
return "解析响应内容失败。"
return {}
def chat_completion_messages(
messages, user_id: str = None, system_prompt="You are a helpful assistant.", model="Qwen2.5-72B",
project="DecentralGPT", stream=False, temperature=0.3, max_tokens=1024, top_p=0.5,
frequency_penalty=0, presence_penalty=0):
"""处理用户请求并保留上下文"""
url = 'https://usa-chat.degpt.ai/api/v0/chat/completion/proxy'
headers = {
'sec-ch-ua-platform': '"macOS"',
'Referer': 'https://www.degpt.ai/',
'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/131.0.0.0 Safari/537.36',
'sec-ch-ua': 'Google Chrome";v="131", "Chromium";v="131", "Not_A Brand";v="24"',
'DNT': '1',
'Content-Type': 'application/json',
'sec-ch-ua-mobile': '?0'
}
# # 初始化或更新用户的对话历史
# if user_id is not None:
# if user_id not in user_contexts:
# user_contexts[user_id] = [{"role": "system", "content": system_prompt}]
# user_contexts[user_id].append({"role": "user", "content": user_prompt})
# # 检查是否需要修剪历史记录,保留 `system` 提示词
# while len(user_contexts[user_id]) > MAX_HISTORY_LENGTH:
# # 删除最早的用户问题和系统回复,但保留 `system` 提示词
# if len(user_contexts[user_id]) > 2:
# # 检查删除的条目是否有匹配的系统回复,如果没有,只删除用户输入
# if user_contexts[user_id][2]["role"] == "user":
# user_contexts[user_id] = [user_contexts[user_id][0]] + user_contexts[user_id][2:]
# else:
# user_contexts[user_id] = [user_contexts[user_id][0]] + user_contexts[user_id][2:]
# else:
# break
# messages = user_contexts[user_id]
# else:
# # 如果没有提供 user_id,不保留上下文
# messages = [{"role": "system", "content": system_prompt}, {"role": "user", "content": user_prompt}]
payload = {
"model": get_model_by_id(model),
"messages": messages,
"project": project,
"stream": stream,
"temperature": temperature,
"max_tokens": max_tokens,
"top_p": top_p,
"frequency_penalty": frequency_penalty,
"presence_penalty": presence_penalty
}
try:
response = requests.post(url, headers=headers, json=payload)
response.encoding = 'utf-8'
response.raise_for_status()
## print(response.text)
# # 获取响应并添加到上下文
# response_content = response.json()["choices"][0]["message"]["content"]
# # print(
# # f"=========== {user_id}:{user_prompt} ====================\r\n请求内容:{messages}\r\n完整响应:{response.text}")
# # 将系统的回复添加到用户上下文中
# if user_id is not None:
# user_contexts[user_id].append({"role": "assistant", "content": response_content})
return response.text
except requests.exceptions.RequestException as e:
print(f"请求失败: {e}")
return "请求失败,请检查网络或参数配置。"
except (KeyError, IndexError) as e:
print(f"解析响应时出错: {e}")
return "解析响应内容失败。"
return {}
@app.route('/api/models', methods=['GET'])
@app.route('/api/v1/models', methods=['GET'])
@app.route('/hf/v1/models', methods=['GET'])
def models():
"""返回可用模型列表"""
return get_models()
@app.route('/api/chat/completion', methods=['POST'])
@app.route('/api/v1/chat/completions', methods=['POST'])
@app.route('/hf/v1/chat/completions', methods=['POST'])
def chat_completion_api():
"""处理用户请求并保留上下文"""
data = request.json
# user_prompt = data.get("prompt")
user_id = data.get("user_id", str(uuid.uuid4())) # 如果未提供 user_id,生成随机值
model=get_model_by_id(data.get("model"))
temperature=data.get("temperature", 0.3)
max_tokens =data.get("max_tokens", 1024)
messages = data.get("messages", [])
stream = data.get("stream", False)
response_content = chat_completion_messages(
messages=messages,
user_id=user_id,
temperature=temperature,
max_tokens=max_tokens,
stream=stream,
model=model
)
# maybe \uxxxx
# return jsonify(response_content)
## maybe \"xxx\"
# return Response(
# json.dumps(response_content, ensure_ascii=False),
# content_type="application/json; charset=utf-8"
# )
# support Chinese
if isinstance(response_content, str): # 如果已经是 JSON 字符串
return Response(response_content, content_type="application/json; charset=utf-8")
if __name__ == '__main__':
app.run(host='0.0.0.0', port=7860)