Commit
Β·
0f7b282
1
Parent(s):
bf951a0
First commit
Browse files- .DS_Store +0 -0
- Dockerfile +16 -0
- app.py +181 -0
- requirements.txt +12 -0
.DS_Store
ADDED
|
Binary file (6.15 kB). View file
|
|
|
Dockerfile
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
FROM python:3.10-slim
|
| 2 |
+
|
| 3 |
+
# System deps for git-lfs (model pulls) and faster tokenization wheels
|
| 4 |
+
RUN apt-get update && apt-get install -y git-lfs && git lfs install
|
| 5 |
+
|
| 6 |
+
WORKDIR /app
|
| 7 |
+
|
| 8 |
+
# Install Python deps first for cache efficiency
|
| 9 |
+
COPY requirements.txt .
|
| 10 |
+
RUN pip install --no-cache-dir -r requirements.txt
|
| 11 |
+
|
| 12 |
+
# Copy application code
|
| 13 |
+
COPY . .
|
| 14 |
+
|
| 15 |
+
EXPOSE 7860
|
| 16 |
+
CMD ["python", "app.py"]
|
app.py
ADDED
|
@@ -0,0 +1,181 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# ------------------------------------------------------------------
|
| 2 |
+
# app.py
|
| 3 |
+
# FastAPI + Gradio hybrid RAG service
|
| 4 |
+
# (c) Samyak Shrestha β 2025
|
| 5 |
+
# ------------------------------------------------------------------
|
| 6 |
+
|
| 7 |
+
import os, json, time
|
| 8 |
+
from pathlib import Path
|
| 9 |
+
from typing import List
|
| 10 |
+
|
| 11 |
+
import torch
|
| 12 |
+
from fastapi import FastAPI
|
| 13 |
+
from pydantic import BaseModel
|
| 14 |
+
import gradio as gr
|
| 15 |
+
|
| 16 |
+
from transformers import (
|
| 17 |
+
AutoTokenizer,
|
| 18 |
+
AutoModelForCausalLM,
|
| 19 |
+
BitsAndBytesConfig,
|
| 20 |
+
)
|
| 21 |
+
|
| 22 |
+
from huggingface_hub import hf_hub_download
|
| 23 |
+
import faiss
|
| 24 |
+
from sentence_transformers import SentenceTransformer
|
| 25 |
+
import numpy as np
|
| 26 |
+
|
| 27 |
+
# ------------------------------------------------------------------
|
| 28 |
+
# Configuration
|
| 29 |
+
# ------------------------------------------------------------------
|
| 30 |
+
HF_MODEL_ID = "samyakshrestha/merged-finetuned-mistral" # weights + FAISS live here
|
| 31 |
+
EMBED_MODEL = "BAAI/bge-base-en-v1.5"
|
| 32 |
+
|
| 33 |
+
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
| 34 |
+
TOP_K = 5
|
| 35 |
+
CTX_TOKEN_LIMIT = 2048
|
| 36 |
+
MAX_NEW_TOKENS = 256
|
| 37 |
+
|
| 38 |
+
DATA_DIR = Path("data") # cached at runtime
|
| 39 |
+
DATA_DIR.mkdir(exist_ok=True)
|
| 40 |
+
|
| 41 |
+
FAISS_BIN_NAME = "data/faiss_index/faiss_index.bin"
|
| 42 |
+
META_JSON_NAME = "data/faiss_index/chunk_metadata.json"
|
| 43 |
+
INDEX_PATH = DATA_DIR / "faiss_index.bin"
|
| 44 |
+
META_PATH = DATA_DIR / "chunk_metadata.json"
|
| 45 |
+
|
| 46 |
+
# ------------------------------------------------------------------
|
| 47 |
+
# 1) Embedding model
|
| 48 |
+
# ------------------------------------------------------------------
|
| 49 |
+
print("Loading embedding model β¦")
|
| 50 |
+
embedder = SentenceTransformer(EMBED_MODEL, device=DEVICE)
|
| 51 |
+
embed_dim = embedder.get_sentence_embedding_dimension()
|
| 52 |
+
print(f"{EMBED_MODEL} ({embed_dim}-d vectors)")
|
| 53 |
+
|
| 54 |
+
# ------------------------------------------------------------------
|
| 55 |
+
# 2) Download / load FAISS index + metadata
|
| 56 |
+
# ------------------------------------------------------------------
|
| 57 |
+
def download_assets():
|
| 58 |
+
if not INDEX_PATH.exists():
|
| 59 |
+
print("Downloading FAISS index from Hub β¦")
|
| 60 |
+
hf_hub_download(
|
| 61 |
+
repo_id = HF_MODEL_ID,
|
| 62 |
+
filename = FAISS_BIN_NAME,
|
| 63 |
+
local_dir = DATA_DIR,
|
| 64 |
+
local_dir_use_symlinks=False,
|
| 65 |
+
)
|
| 66 |
+
if not META_PATH.exists():
|
| 67 |
+
print("Downloading metadata β¦")
|
| 68 |
+
hf_hub_download(
|
| 69 |
+
repo_id = HF_MODEL_ID,
|
| 70 |
+
filename = META_JSON_NAME,
|
| 71 |
+
local_dir = DATA_DIR,
|
| 72 |
+
local_dir_use_symlinks=False,
|
| 73 |
+
)
|
| 74 |
+
|
| 75 |
+
download_assets()
|
| 76 |
+
|
| 77 |
+
print("Loading FAISS index β¦")
|
| 78 |
+
index = faiss.read_index(str(INDEX_PATH))
|
| 79 |
+
with open(META_PATH) as f:
|
| 80 |
+
chunk_metadata = json.load(f)
|
| 81 |
+
assert index.ntotal == len(chunk_metadata), "Index / metadata size mismatch"
|
| 82 |
+
print(f"vectors = {index.ntotal}")
|
| 83 |
+
|
| 84 |
+
# ------------------------------------------------------------------
|
| 85 |
+
# 3) Load language model (4-bit if bitsandbytes is available)
|
| 86 |
+
# ------------------------------------------------------------------
|
| 87 |
+
print("Loading LoRA-fine-tuned Mistral β¦")
|
| 88 |
+
|
| 89 |
+
bnb_cfg = None
|
| 90 |
+
try:
|
| 91 |
+
import bitsandbytes # noqa: F401
|
| 92 |
+
bnb_cfg = BitsAndBytesConfig(
|
| 93 |
+
load_in_4bit=True,
|
| 94 |
+
bnb_4bit_compute_dtype=torch.float16,
|
| 95 |
+
bnb_4bit_use_double_quant=True,
|
| 96 |
+
bnb_4bit_quant_type="nf4",
|
| 97 |
+
)
|
| 98 |
+
print("bitsandbytes detected β 4-bit quant enabled")
|
| 99 |
+
except ImportError:
|
| 100 |
+
print("bitsandbytes not found β loading in fp16 / fp32")
|
| 101 |
+
|
| 102 |
+
tokenizer = AutoTokenizer.from_pretrained(HF_MODEL_ID, use_fast=True)
|
| 103 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 104 |
+
HF_MODEL_ID,
|
| 105 |
+
device_map="auto" if DEVICE == "cuda" else None,
|
| 106 |
+
torch_dtype=torch.float16 if DEVICE == "cuda" else torch.float32,
|
| 107 |
+
quantization_config=bnb_cfg,
|
| 108 |
+
)
|
| 109 |
+
model.eval()
|
| 110 |
+
print("model ready")
|
| 111 |
+
|
| 112 |
+
# ------------------------------------------------------------------
|
| 113 |
+
# 4) Retrieval & Generation helpers
|
| 114 |
+
# ------------------------------------------------------------------
|
| 115 |
+
def retrieve_chunks(query: str, k: int = TOP_K) -> List[dict]:
|
| 116 |
+
emb = embedder.encode([query], normalize_embeddings=True)
|
| 117 |
+
_, idxs = index.search(emb, k)
|
| 118 |
+
return [chunk_metadata[int(i)] for i in idxs[0]]
|
| 119 |
+
|
| 120 |
+
def build_prompt(query: str, chunks: List[dict]) -> str:
|
| 121 |
+
ctx_blocks, total_tokens = [], 0
|
| 122 |
+
for ch in chunks:
|
| 123 |
+
block = f"[{ch['title']}]\n{ch['text']}\n"
|
| 124 |
+
toks = len(tokenizer.tokenize(block))
|
| 125 |
+
if total_tokens + toks <= CTX_TOKEN_LIMIT:
|
| 126 |
+
ctx_blocks.append(block)
|
| 127 |
+
total_tokens += toks
|
| 128 |
+
context = "\n\n".join(ctx_blocks)
|
| 129 |
+
return (
|
| 130 |
+
"You are an expert scientific assistant. "
|
| 131 |
+
"Use the excerpts to answer.\n\n"
|
| 132 |
+
f"Excerpts:\n{context}\n\n"
|
| 133 |
+
f"Question: {query}\nAnswer:"
|
| 134 |
+
)
|
| 135 |
+
|
| 136 |
+
@torch.inference_mode()
|
| 137 |
+
def generate_answer(query: str) -> str:
|
| 138 |
+
prompt = build_prompt(query, retrieve_chunks(query))
|
| 139 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(DEVICE)
|
| 140 |
+
output = model.generate(
|
| 141 |
+
**inputs,
|
| 142 |
+
max_new_tokens=MAX_NEW_TOKENS,
|
| 143 |
+
do_sample=False,
|
| 144 |
+
top_p=1.0,
|
| 145 |
+
)
|
| 146 |
+
return (
|
| 147 |
+
tokenizer.decode(output[0], skip_special_tokens=True)
|
| 148 |
+
.split("Answer:")[-1]
|
| 149 |
+
.strip()
|
| 150 |
+
)
|
| 151 |
+
|
| 152 |
+
# ------------------------------------------------------------------
|
| 153 |
+
# 5) FastAPI backend
|
| 154 |
+
# ------------------------------------------------------------------
|
| 155 |
+
api = FastAPI(title="Finetuned Mistral RAG API")
|
| 156 |
+
|
| 157 |
+
class Question(BaseModel):
|
| 158 |
+
question: str
|
| 159 |
+
|
| 160 |
+
class Answer(BaseModel):
|
| 161 |
+
answer: str
|
| 162 |
+
|
| 163 |
+
@api.post("/rag", response_model=Answer)
|
| 164 |
+
def rag_endpoint(item: Question):
|
| 165 |
+
return Answer(answer=generate_answer(item.question))
|
| 166 |
+
|
| 167 |
+
# ------------------------------------------------------------------
|
| 168 |
+
# 6) Gradio chat UI
|
| 169 |
+
# ------------------------------------------------------------------
|
| 170 |
+
demo = gr.Interface(
|
| 171 |
+
fn = generate_answer,
|
| 172 |
+
inputs = gr.Textbox(label="Ask a question about LLM fine-tuning"),
|
| 173 |
+
outputs = gr.Textbox(label="Answer"),
|
| 174 |
+
title = "Finetuned Mistral-7B β Retrieval-Augmented QA",
|
| 175 |
+
)
|
| 176 |
+
|
| 177 |
+
# ------------------------------------------------------------------
|
| 178 |
+
# 7) Launch (Spaces exposes port 7860)
|
| 179 |
+
# ------------------------------------------------------------------
|
| 180 |
+
if __name__ == "__main__":
|
| 181 |
+
demo.launch(server_name="0.0.0.0", server_port=7860)
|
requirements.txt
ADDED
|
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
fastapi==0.110.1
|
| 2 |
+
uvicorn[standard]==0.29.0
|
| 3 |
+
transformers==4.40.1
|
| 4 |
+
huggingface_hub==0.23.0
|
| 5 |
+
sentence-transformers==2.7.0
|
| 6 |
+
faiss-cpu==1.7.4
|
| 7 |
+
torch==2.2.2
|
| 8 |
+
gradio==4.24.0
|
| 9 |
+
pydantic>=2.6
|
| 10 |
+
numpy
|
| 11 |
+
bitsandbytes ; sys_platform == 'linux' # only installs on Linux/GPU
|
| 12 |
+
accelerate # optional, speeds HF model I/O
|