Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# app.py
|
2 |
+
|
3 |
+
import gradio as gr
|
4 |
+
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
|
5 |
+
|
6 |
+
def generate_sequences(model_name, prompt):
|
7 |
+
if model_name == "nferruz/ProtGPT2":
|
8 |
+
protgpt2 = pipeline('text-generation', model="nferruz/ProtGPT2")
|
9 |
+
sequences = protgpt2(prompt, max_length=100, do_sample=True, top_k=950, repetition_penalty=1.2, num_return_sequences=10, eos_token_id=0)
|
10 |
+
return "\n".join([seq['generated_text'] for seq in sequences])
|
11 |
+
elif model_name == "lightonai/RITA_xl":
|
12 |
+
model = AutoModelForCausalLM.from_pretrained("lightonai/RITA_xl", trust_remote_code=True)
|
13 |
+
tokenizer = AutoTokenizer.from_pretrained("lightonai/RITA_xl")
|
14 |
+
rita_gen = pipeline('text-generation', model=model, tokenizer=tokenizer)
|
15 |
+
sequences = rita_gen(prompt, max_length=20, do_sample=True, top_k=950, repetition_penalty=1.2, num_return_sequences=2, eos_token_id=2)
|
16 |
+
return "\n".join([seq['generated_text'].replace(' ', '') for seq in sequences])
|
17 |
+
else:
|
18 |
+
return "Model not supported"
|
19 |
+
|
20 |
+
model_options = ["nferruz/ProtGPT2", "lightonai/RITA_xl"]
|
21 |
+
|
22 |
+
gr.Interface(
|
23 |
+
fn=generate_sequences,
|
24 |
+
inputs=[
|
25 |
+
gr.Dropdown(model_options, label="Select Model"),
|
26 |
+
gr.Textbox(lines=2, placeholder="Enter your prompt here...", label="Prompt")
|
27 |
+
],
|
28 |
+
outputs="text",
|
29 |
+
title="Sequence Generation with Transformers",
|
30 |
+
description="Generate sequences using selected transformer models."
|
31 |
+
).launch()
|