|
import gradio as gr |
|
import torch |
|
import tiktoken |
|
import math |
|
|
|
class LayerNorm(torch.nn.Module): |
|
def __init__(self, ndim, bias): |
|
super().__init__() |
|
self.weight = torch.nn.Parameter(torch.ones(ndim)) |
|
self.bias = torch.nn.Parameter(torch.zeros(ndim)) if bias else None |
|
|
|
def forward(self, input): |
|
return torch.nn.functional.layer_norm(input, self.weight.shape, self.weight, self.bias, 1e-5) |
|
|
|
class CausalSelfAttention(torch.nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
assert config["emb_dim"] % config["n_heads"] == 0 |
|
self.c_attn = torch.nn.Linear(config["emb_dim"], 3 * config["emb_dim"], bias=config["qkv_bias"]) |
|
self.c_proj = torch.nn.Linear(config["emb_dim"], config["emb_dim"], bias=True) |
|
self.attn_dropout = torch.nn.Dropout(config["drop_rate"]) |
|
self.resid_dropout = torch.nn.Dropout(config["drop_rate"]) |
|
self.n_heads = config["n_heads"] |
|
self.n_embd = config["emb_dim"] |
|
self.dropout = config["drop_rate"] |
|
self.register_buffer("bias", torch.tril(torch.ones(config["context_length"], config["context_length"])) |
|
.view(1, 1, config["context_length"], config["context_length"])) |
|
|
|
def forward(self, x): |
|
B, T, C = x.size() |
|
q, k, v = self.c_attn(x).split(self.n_embd, dim=2) |
|
k = k.view(B, T, self.n_heads, C // self.n_heads).transpose(1, 2) |
|
q = q.view(B, T, self.n_heads, C // self.n_heads).transpose(1, 2) |
|
v = v.view(B, T, self.n_heads, C // self.n_heads).transpose(1, 2) |
|
att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1))) |
|
att = att.masked_fill(self.bias[:,:,:T,:T] == 0, float('-inf')) |
|
att = torch.nn.functional.softmax(att, dim=-1) |
|
att = self.attn_dropout(att) |
|
y = att @ v |
|
y = y.transpose(1, 2).contiguous().view(B, T, C) |
|
y = self.resid_dropout(self.c_proj(y)) |
|
return y |
|
|
|
class MLP(torch.nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.c_fc = torch.nn.Linear(config["emb_dim"], 4 * config["emb_dim"], bias=True) |
|
self.gelu = torch.nn.GELU() |
|
self.c_proj = torch.nn.Linear(4 * config["emb_dim"], config["emb_dim"], bias=True) |
|
self.dropout = torch.nn.Dropout(config["drop_rate"]) |
|
|
|
def forward(self, x): |
|
x = self.c_fc(x) |
|
x = self.gelu(x) |
|
x = self.c_proj(x) |
|
x = self.dropout(x) |
|
return x |
|
|
|
class Block(torch.nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.ln_1 = LayerNorm(config["emb_dim"], bias=True) |
|
self.attn = CausalSelfAttention(config) |
|
self.ln_2 = LayerNorm(config["emb_dim"], bias=True) |
|
self.mlp = MLP(config) |
|
|
|
def forward(self, x): |
|
x = x + self.attn(self.ln_1(x)) |
|
x = x + self.mlp(self.ln_2(x)) |
|
return x |
|
|
|
class GPTModel(torch.nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.config = config |
|
self.transformer = torch.nn.ModuleDict(dict( |
|
wte = torch.nn.Embedding(config["vocab_size"], config["emb_dim"]), |
|
wpe = torch.nn.Embedding(config["context_length"], config["emb_dim"]), |
|
drop = torch.nn.Dropout(config["drop_rate"]), |
|
h = torch.nn.ModuleList([Block(config) for _ in range(config["n_layers"])]), |
|
ln_f = LayerNorm(config["emb_dim"], bias=True) |
|
)) |
|
self.lm_head = torch.nn.Linear(config["emb_dim"], config["vocab_size"], bias=False) |
|
self.transformer.wte.weight = self.lm_head.weight |
|
self.apply(self._init_weights) |
|
|
|
def _init_weights(self, module): |
|
if isinstance(module, torch.nn.Linear): |
|
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02) |
|
if module.bias is not None: |
|
torch.nn.init.zeros_(module.bias) |
|
elif isinstance(module, torch.nn.Embedding): |
|
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02) |
|
|
|
def forward(self, idx, targets=None): |
|
device = idx.device |
|
b, t = idx.size() |
|
pos = torch.arange(0, t, dtype=torch.long, device=device).unsqueeze(0) |
|
tok_emb = self.transformer.wte(idx) |
|
pos_emb = self.transformer.wpe(pos) |
|
x = self.transformer.drop(tok_emb + pos_emb) |
|
for block in self.transformer.h: |
|
x = block(x) |
|
x = self.transformer.ln_f(x) |
|
logits = self.lm_head(x) |
|
|
|
loss = None |
|
if targets is not None: |
|
loss = torch.nn.functional.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1), ignore_index=-1) |
|
|
|
return logits, loss |
|
|
|
def generate_text_simple(model, idx, max_new_tokens, context_size): |
|
for _ in range(max_new_tokens): |
|
idx_cond = idx[:, -context_size:] |
|
logits, _ = model(idx_cond) |
|
logits = logits[:, -1, :] |
|
probs = torch.nn.functional.softmax(logits, dim=-1) |
|
idx_next = torch.multinomial(probs, num_samples=1) |
|
idx = torch.cat((idx, idx_next), dim=1) |
|
return idx |
|
|
|
|
|
GPT_CONFIG_124M = { |
|
"vocab_size": 50257, |
|
"context_length": 1024, |
|
"emb_dim": 768, |
|
"n_heads": 12, |
|
"n_layers": 12, |
|
"drop_rate": 0.1, |
|
"qkv_bias": False |
|
} |
|
|
|
|
|
model = GPTModel(GPT_CONFIG_124M) |
|
|
|
|
|
model.load_state_dict(torch.load("my_gpt_model.pth", map_location=torch.device('cpu'))) |
|
model.eval() |
|
|
|
tokenizer = tiktoken.get_encoding("gpt2") |
|
|
|
def generate(prompt, max_new_tokens): |
|
token_ids = tokenizer.encode(prompt) |
|
input_ids = torch.tensor(token_ids).unsqueeze(0) |
|
output_ids = generate_text_simple( |
|
model=model, |
|
idx=input_ids, |
|
max_new_tokens=max_new_tokens, |
|
context_size=GPT_CONFIG_124M["context_length"] |
|
) |
|
return tokenizer.decode(output_ids.squeeze(0).tolist()) |
|
|
|
iface = gr.Interface( |
|
fn=generate, |
|
inputs=[ |
|
gr.Textbox(label="Prompt"), |
|
gr.Slider(minimum=1, maximum=100, value=20, step=1, label="Max New Tokens") |
|
], |
|
outputs=gr.Textbox(label="Generated Text"), |
|
title="SamGPT Text Generation", |
|
description="Enter a prompt to generate text with the custom language model." |
|
) |
|
|
|
iface.launch() |