Samuel Stevens
commited on
Commit
·
c4ee5c3
1
Parent(s):
699b9c3
Include original predictions
Browse files- .gitattributes +1 -0
- app.py +63 -68
- data.py +1 -1
- modeling.py +2 -2
.gitattributes
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
app.py
CHANGED
@@ -125,7 +125,6 @@ def add_highlights(
|
|
125 |
upper: int | None = None,
|
126 |
opacity: float = 0.9,
|
127 |
) -> Image.Image:
|
128 |
-
breakpoint()
|
129 |
if not len(patches):
|
130 |
return img
|
131 |
|
@@ -198,18 +197,22 @@ class SaeActivation(typing.TypedDict):
|
|
198 |
|
199 |
|
200 |
@beartype.beartype
|
201 |
-
def
|
202 |
-
img_sized = data.to_sized(data.
|
203 |
seg_sized = data.to_sized(data.get_seg(i))
|
204 |
seg_u8_sized = data.to_u8(seg_sized)
|
205 |
seg_img_sized = data.u8_to_img(seg_u8_sized)
|
206 |
|
207 |
-
return
|
|
|
|
|
|
|
|
|
208 |
|
209 |
|
210 |
@beartype.beartype
|
211 |
@torch.inference_mode
|
212 |
-
def
|
213 |
"""
|
214 |
Given a particular cell, returns some highlighted images showing what feature fires most on this cell.
|
215 |
"""
|
@@ -219,7 +222,7 @@ def get_sae_activations(image_i: int, patches: list[int]) -> list[SaeActivation]
|
|
219 |
split_vit, vit_transform = modeling.load_vit(DEVICE)
|
220 |
sae = load_sae(DEVICE)
|
221 |
|
222 |
-
img = data.
|
223 |
|
224 |
x_BCWH = vit_transform(img)[None, ...].to(DEVICE)
|
225 |
|
@@ -261,7 +264,7 @@ def get_sae_activations(image_i: int, patches: list[int]) -> list[SaeActivation]
|
|
261 |
examples = []
|
262 |
for i_im, values_p in pairs:
|
263 |
seg_sized = data.to_sized(data.get_seg(i_im))
|
264 |
-
img_sized = data.to_sized(data.
|
265 |
|
266 |
seg_u8_sized = data.to_u8(seg_sized)
|
267 |
seg_img_sized = data.u8_to_img(seg_u8_sized)
|
@@ -286,26 +289,27 @@ def get_sae_activations(image_i: int, patches: list[int]) -> list[SaeActivation]
|
|
286 |
|
287 |
|
288 |
@torch.inference_mode
|
289 |
-
def
|
290 |
-
|
291 |
-
|
292 |
-
return image
|
293 |
|
|
|
294 |
|
295 |
-
|
296 |
-
|
297 |
-
sample = vit_dataset[i]
|
298 |
-
x = sample["image"][None, ...].to(device)
|
299 |
-
x_BPD = rest_of_vit.forward_start(x)
|
300 |
-
x_BPD = rest_of_vit.forward_end(x_BPD)
|
301 |
|
302 |
x_WHD = einops.rearrange(x_BPD, "() (w h) dim -> w h dim", w=16, h=16)
|
303 |
|
304 |
-
|
|
|
305 |
|
306 |
pred_WH = logits_WHC.argmax(axis=-1)
|
307 |
-
preds = einops.rearrange(pred_WH, "w h -> (w h)").tolist()
|
308 |
-
return
|
|
|
|
|
|
|
|
|
309 |
|
310 |
|
311 |
@beartype.beartype
|
@@ -393,64 +397,55 @@ def upsample(
|
|
393 |
|
394 |
|
395 |
with gr.Blocks() as demo:
|
396 |
-
|
|
|
|
|
|
|
|
|
|
|
397 |
|
398 |
-
|
399 |
-
|
400 |
|
401 |
-
|
402 |
-
|
403 |
-
|
404 |
-
inputs=[image_number],
|
405 |
-
outputs=[input_image_base64, true_labels_base64, image_number],
|
406 |
-
api_name="get-image",
|
407 |
)
|
408 |
|
409 |
-
|
410 |
-
#
|
411 |
-
|
412 |
-
# type="pil",
|
413 |
-
# interactive=True,
|
414 |
-
# )
|
415 |
-
# patch_numbers = gr.CheckboxGroup(label="Image Patch", choices=list(range(256)))
|
416 |
-
# top_latent_numbers = gr.CheckboxGroup(label="Top Latents")
|
417 |
-
# top_latent_numbers = [
|
418 |
-
# gr.Number(label="Top Latents #{j+1}") for j in range(n_sae_latents)
|
419 |
-
# ]
|
420 |
-
# sae_example_images = [
|
421 |
-
# gr.Image(label=f"Latent #{j}, Example #{i + 1}", format="png")
|
422 |
-
# for i in range(n_sae_examples)
|
423 |
-
# for j in range(n_sae_latents)
|
424 |
-
# ]
|
425 |
|
|
|
426 |
patches_json = gr.JSON(label="Patches", value=[])
|
427 |
-
|
428 |
-
|
429 |
-
|
430 |
-
|
431 |
-
|
432 |
-
|
433 |
-
|
434 |
-
|
|
|
435 |
)
|
436 |
-
# semseg_image = gr.Image(label="Semantic Segmentaions", format="png")
|
437 |
-
# semseg_colors = gr.CheckboxGroup(
|
438 |
-
# label="Sem Seg Colors", choices=list(range(1, 151))
|
439 |
-
# )
|
440 |
|
441 |
-
|
442 |
-
#
|
443 |
-
|
444 |
-
|
445 |
-
#
|
446 |
-
|
447 |
-
|
|
|
|
|
|
|
|
|
448 |
|
449 |
# get_true_labels_btn = gr.Button(value="Get True Label")
|
450 |
# get_true_labels_btn.click(
|
451 |
# get_true_labels,
|
452 |
-
# inputs=[
|
453 |
-
# outputs=
|
454 |
# api_name="get-true-labels",
|
455 |
# )
|
456 |
|
@@ -462,8 +457,8 @@ with gr.Blocks() as demo:
|
|
462 |
# get_modified_labels_btn = gr.Button(value="Get Modified Label")
|
463 |
# get_modified_labels_btn.click(
|
464 |
# get_modified_labels,
|
465 |
-
# inputs=[
|
466 |
-
# outputs=[
|
467 |
# api_name="get-modified-labels",
|
468 |
# )
|
469 |
|
|
|
125 |
upper: int | None = None,
|
126 |
opacity: float = 0.9,
|
127 |
) -> Image.Image:
|
|
|
128 |
if not len(patches):
|
129 |
return img
|
130 |
|
|
|
197 |
|
198 |
|
199 |
@beartype.beartype
|
200 |
+
def get_img(i: int) -> dict[str, object]:
|
201 |
+
img_sized = data.to_sized(data.get_img(i))
|
202 |
seg_sized = data.to_sized(data.get_seg(i))
|
203 |
seg_u8_sized = data.to_u8(seg_sized)
|
204 |
seg_img_sized = data.u8_to_img(seg_u8_sized)
|
205 |
|
206 |
+
return {
|
207 |
+
"index": i,
|
208 |
+
"orig_url": data.img_to_base64(img_sized),
|
209 |
+
"seg_url": data.img_to_base64(seg_img_sized),
|
210 |
+
}
|
211 |
|
212 |
|
213 |
@beartype.beartype
|
214 |
@torch.inference_mode
|
215 |
+
def get_sae_latents(img_i: int, patches: list[int]) -> list[SaeActivation]:
|
216 |
"""
|
217 |
Given a particular cell, returns some highlighted images showing what feature fires most on this cell.
|
218 |
"""
|
|
|
222 |
split_vit, vit_transform = modeling.load_vit(DEVICE)
|
223 |
sae = load_sae(DEVICE)
|
224 |
|
225 |
+
img = data.get_img(img_i)
|
226 |
|
227 |
x_BCWH = vit_transform(img)[None, ...].to(DEVICE)
|
228 |
|
|
|
264 |
examples = []
|
265 |
for i_im, values_p in pairs:
|
266 |
seg_sized = data.to_sized(data.get_seg(i_im))
|
267 |
+
img_sized = data.to_sized(data.get_img(i_im))
|
268 |
|
269 |
seg_u8_sized = data.to_u8(seg_sized)
|
270 |
seg_img_sized = data.u8_to_img(seg_u8_sized)
|
|
|
289 |
|
290 |
|
291 |
@torch.inference_mode
|
292 |
+
def get_preds(i: int) -> dict[str, object]:
|
293 |
+
img = data.get_img(i)
|
294 |
+
split_vit, vit_transform = modeling.load_vit(DEVICE)
|
|
|
295 |
|
296 |
+
x_BCWH = vit_transform(img)[None, ...].to(DEVICE)
|
297 |
|
298 |
+
x_BPD = split_vit.forward_start(x_BCWH)
|
299 |
+
x_BPD = split_vit.forward_end(x_BPD)
|
|
|
|
|
|
|
|
|
300 |
|
301 |
x_WHD = einops.rearrange(x_BPD, "() (w h) dim -> w h dim", w=16, h=16)
|
302 |
|
303 |
+
clf = load_clf()
|
304 |
+
logits_WHC = clf(x_WHD)
|
305 |
|
306 |
pred_WH = logits_WHC.argmax(axis=-1)
|
307 |
+
# preds = einops.rearrange(pred_WH, "w h -> (w h)").tolist()
|
308 |
+
return {
|
309 |
+
"index": i,
|
310 |
+
"orig_url": data.img_to_base64(data.to_sized(img)),
|
311 |
+
"seg_url": data.img_to_base64(data.u8_to_img(upsample(pred_WH))),
|
312 |
+
}
|
313 |
|
314 |
|
315 |
@beartype.beartype
|
|
|
397 |
|
398 |
|
399 |
with gr.Blocks() as demo:
|
400 |
+
###########
|
401 |
+
# get-img #
|
402 |
+
###########
|
403 |
+
|
404 |
+
# Inputs
|
405 |
+
img_number = gr.Number(label="Example Index")
|
406 |
|
407 |
+
# Outputs
|
408 |
+
get_img_out = gr.JSON(label="get_img_out", value={})
|
409 |
|
410 |
+
get_input_img_btn = gr.Button(value="Get Input Image")
|
411 |
+
get_input_img_btn.click(
|
412 |
+
get_img, inputs=[img_number], outputs=[get_img_out], api_name="get-img"
|
|
|
|
|
|
|
413 |
)
|
414 |
|
415 |
+
###################
|
416 |
+
# get-sae-latents #
|
417 |
+
###################
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
418 |
|
419 |
+
# Inputs
|
420 |
patches_json = gr.JSON(label="Patches", value=[])
|
421 |
+
# Outputs
|
422 |
+
get_sae_latents_out = gr.JSON(label="get_sae_latents_out", value=[])
|
423 |
+
|
424 |
+
get_sae_latents_btn = gr.Button(value="Get SAE Latents")
|
425 |
+
get_sae_latents_btn.click(
|
426 |
+
get_sae_latents,
|
427 |
+
inputs=[img_number, patches_json],
|
428 |
+
outputs=[get_sae_latents_out],
|
429 |
+
api_name="get-sae-latents",
|
430 |
)
|
|
|
|
|
|
|
|
|
431 |
|
432 |
+
#############
|
433 |
+
# get-preds #
|
434 |
+
#############
|
435 |
+
|
436 |
+
# Outputs
|
437 |
+
get_preds_out = gr.JSON(label="get_preds_out", value=[])
|
438 |
+
|
439 |
+
get_pred_labels_btn = gr.Button(value="Get Predictions")
|
440 |
+
get_pred_labels_btn.click(
|
441 |
+
get_preds, inputs=[img_number], outputs=[get_preds_out], api_name="get-preds"
|
442 |
+
)
|
443 |
|
444 |
# get_true_labels_btn = gr.Button(value="Get True Label")
|
445 |
# get_true_labels_btn.click(
|
446 |
# get_true_labels,
|
447 |
+
# inputs=[img_number],
|
448 |
+
# outputs=semseg_img,
|
449 |
# api_name="get-true-labels",
|
450 |
# )
|
451 |
|
|
|
457 |
# get_modified_labels_btn = gr.Button(value="Get Modified Label")
|
458 |
# get_modified_labels_btn.click(
|
459 |
# get_modified_labels,
|
460 |
+
# inputs=[img_number] + latent_numbers + value_sliders,
|
461 |
+
# outputs=[semseg_img, semseg_colors],
|
462 |
# api_name="get-modified-labels",
|
463 |
# )
|
464 |
|
data.py
CHANGED
@@ -20,7 +20,7 @@ R2_URL = "https://pub-129e98faed1048af94c4d4119ea47be7.r2.dev"
|
|
20 |
|
21 |
@beartype.beartype
|
22 |
@functools.lru_cache(maxsize=512)
|
23 |
-
def
|
24 |
fpath = f"/images/ADE_val_{i + 1:08}.jpg"
|
25 |
url = R2_URL + fpath
|
26 |
logger.info("Getting image from '%s'.", url)
|
|
|
20 |
|
21 |
@beartype.beartype
|
22 |
@functools.lru_cache(maxsize=512)
|
23 |
+
def get_img(i: int) -> Image.Image:
|
24 |
fpath = f"/images/ADE_val_{i + 1:08}.jpg"
|
25 |
url = R2_URL + fpath
|
26 |
logger.info("Getting image from '%s'.", url)
|
modeling.py
CHANGED
@@ -21,7 +21,7 @@ class SplitDinov2(torch.nn.Module):
|
|
21 |
|
22 |
def forward_start(
|
23 |
self, x: Float[Tensor, "batch channels width height"]
|
24 |
-
) -> Float[Tensor, "batch
|
25 |
x_BPD = self.vit.prepare_tokens_with_masks(x)
|
26 |
for blk in self.vit.blocks[: self.split_at]:
|
27 |
x_BPD = blk(x_BPD)
|
@@ -29,7 +29,7 @@ class SplitDinov2(torch.nn.Module):
|
|
29 |
return x_BPD
|
30 |
|
31 |
def forward_end(
|
32 |
-
self, x_BPD: Float[Tensor, "batch
|
33 |
) -> Float[Tensor, "batch patches dim"]:
|
34 |
for blk in self.vit.blocks[-self.split_at :]:
|
35 |
x_BPD = blk(x_BPD)
|
|
|
21 |
|
22 |
def forward_start(
|
23 |
self, x: Float[Tensor, "batch channels width height"]
|
24 |
+
) -> Float[Tensor, "batch total_patches dim"]:
|
25 |
x_BPD = self.vit.prepare_tokens_with_masks(x)
|
26 |
for blk in self.vit.blocks[: self.split_at]:
|
27 |
x_BPD = blk(x_BPD)
|
|
|
29 |
return x_BPD
|
30 |
|
31 |
def forward_end(
|
32 |
+
self, x_BPD: Float[Tensor, "batch total_patches dim"]
|
33 |
) -> Float[Tensor, "batch patches dim"]:
|
34 |
for blk in self.vit.blocks[-self.split_at :]:
|
35 |
x_BPD = blk(x_BPD)
|