Samuel Stevens
commited on
Commit
·
5db6fa7
1
Parent(s):
107d6a0
Update colors
Browse files- app.py +14 -23
- data.py +49 -3
- requirements.txt +29 -296
app.py
CHANGED
@@ -10,6 +10,7 @@ import beartype
|
|
10 |
import einops
|
11 |
import einops.layers.torch
|
12 |
import gradio as gr
|
|
|
13 |
import numpy as np
|
14 |
import saev.activations
|
15 |
import saev.config
|
@@ -31,7 +32,7 @@ logger = logging.getLogger("app.py")
|
|
31 |
####################
|
32 |
|
33 |
|
34 |
-
MAX_FREQ =
|
35 |
"""Maximum frequency. Any feature that fires more than this is ignored."""
|
36 |
|
37 |
RESIZE_SIZE = 512
|
@@ -46,12 +47,14 @@ DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
|
46 |
CWD = pathlib.Path(".")
|
47 |
"""Current working directory."""
|
48 |
|
49 |
-
N_SAE_LATENTS =
|
50 |
"""Number of SAE latents to show."""
|
51 |
|
52 |
N_LATENT_EXAMPLES = 4
|
53 |
"""Number of examples per SAE latent to show."""
|
54 |
|
|
|
|
|
55 |
|
56 |
@beartype.beartype
|
57 |
class Example(typing.TypedDict):
|
@@ -175,8 +178,11 @@ def add_highlights(
|
|
175 |
overlay = Image.new("RGBA", img.size, (0, 0, 0, 0))
|
176 |
draw = ImageDraw.Draw(overlay)
|
177 |
|
|
|
|
|
|
|
178 |
# Using semi-transparent red (255, 0, 0, alpha)
|
179 |
-
for p, val in enumerate(patches):
|
180 |
assert upper is not None
|
181 |
val /= upper + 1e-9
|
182 |
x_np, y_np = p % iw_np, p // ih_np
|
@@ -185,28 +191,13 @@ def add_highlights(
|
|
185 |
(x_np * pw_px, y_np * ph_px),
|
186 |
(x_np * pw_px + pw_px, y_np * ph_px + ph_px),
|
187 |
],
|
188 |
-
fill=(
|
189 |
)
|
190 |
|
191 |
# Composite the original image and the overlay
|
192 |
return Image.alpha_composite(img.convert("RGBA"), overlay)
|
193 |
|
194 |
|
195 |
-
@jaxtyped(typechecker=beartype.beartype)
|
196 |
-
@torch.inference_mode
|
197 |
-
def upsample(
|
198 |
-
x_WH: Int[Tensor, "width_ps height_ps"],
|
199 |
-
) -> UInt8[Tensor, "width_px height_px"]:
|
200 |
-
return (
|
201 |
-
torch.nn.functional.interpolate(
|
202 |
-
x_WH.view((1, 1, 16, 16)).float(),
|
203 |
-
scale_factor=28,
|
204 |
-
)
|
205 |
-
.view((448, 448))
|
206 |
-
.type(torch.uint8)
|
207 |
-
)
|
208 |
-
|
209 |
-
|
210 |
#######################
|
211 |
# Inference Functions #
|
212 |
#######################
|
@@ -317,10 +308,10 @@ def get_orig_preds(img: Image.Image) -> Example:
|
|
317 |
clf = load_clf()
|
318 |
logits_WHC = clf(x_WHD)
|
319 |
|
320 |
-
pred_WH = logits_WHC.argmax(axis=-1)
|
321 |
return {
|
322 |
"orig_url": data.img_to_base64(data.to_sized(img)),
|
323 |
-
"seg_url": data.img_to_base64(data.
|
324 |
"classes": data.to_classes(pred_WH),
|
325 |
}
|
326 |
|
@@ -384,11 +375,11 @@ def get_mod_preds(img: Image.Image, latents: dict[str, int | float]) -> Example:
|
|
384 |
mod_WHD = einops.rearrange(mod_BPD, "() (w h) dim -> w h dim", w=16, h=16)
|
385 |
|
386 |
logits_WHC = clf(mod_WHD)
|
387 |
-
pred_WH = logits_WHC.argmax(axis=-1)
|
388 |
# pred_WH = einops.rearrange(pred_P, "(w h) -> w h", w=16, h=16)
|
389 |
return {
|
390 |
"orig_url": data.img_to_base64(data.to_sized(img)),
|
391 |
-
"seg_url": data.img_to_base64(data.
|
392 |
"classes": data.to_classes(pred_WH),
|
393 |
}
|
394 |
|
|
|
10 |
import einops
|
11 |
import einops.layers.torch
|
12 |
import gradio as gr
|
13 |
+
import matplotlib
|
14 |
import numpy as np
|
15 |
import saev.activations
|
16 |
import saev.config
|
|
|
32 |
####################
|
33 |
|
34 |
|
35 |
+
MAX_FREQ = 3e-2
|
36 |
"""Maximum frequency. Any feature that fires more than this is ignored."""
|
37 |
|
38 |
RESIZE_SIZE = 512
|
|
|
47 |
CWD = pathlib.Path(".")
|
48 |
"""Current working directory."""
|
49 |
|
50 |
+
N_SAE_LATENTS = 4
|
51 |
"""Number of SAE latents to show."""
|
52 |
|
53 |
N_LATENT_EXAMPLES = 4
|
54 |
"""Number of examples per SAE latent to show."""
|
55 |
|
56 |
+
COLORMAP = matplotlib.colormaps.get_cmap("plasma")
|
57 |
+
|
58 |
|
59 |
@beartype.beartype
|
60 |
class Example(typing.TypedDict):
|
|
|
178 |
overlay = Image.new("RGBA", img.size, (0, 0, 0, 0))
|
179 |
draw = ImageDraw.Draw(overlay)
|
180 |
|
181 |
+
colors = np.zeros((len(patches), 3), dtype=np.uint8)
|
182 |
+
colors[:, 0] = ((patches / (upper + 1e-9)) * 255).astype(np.uint8)
|
183 |
+
|
184 |
# Using semi-transparent red (255, 0, 0, alpha)
|
185 |
+
for p, (val, color) in enumerate(zip(patches, colors)):
|
186 |
assert upper is not None
|
187 |
val /= upper + 1e-9
|
188 |
x_np, y_np = p % iw_np, p // ih_np
|
|
|
191 |
(x_np * pw_px, y_np * ph_px),
|
192 |
(x_np * pw_px + pw_px, y_np * ph_px + ph_px),
|
193 |
],
|
194 |
+
fill=(*color, int(opacity * val * 255)),
|
195 |
)
|
196 |
|
197 |
# Composite the original image and the overlay
|
198 |
return Image.alpha_composite(img.convert("RGBA"), overlay)
|
199 |
|
200 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
201 |
#######################
|
202 |
# Inference Functions #
|
203 |
#######################
|
|
|
308 |
clf = load_clf()
|
309 |
logits_WHC = clf(x_WHD)
|
310 |
|
311 |
+
pred_WH = logits_WHC[:, :, 1:].argmax(axis=-1) + 1
|
312 |
return {
|
313 |
"orig_url": data.img_to_base64(data.to_sized(img)),
|
314 |
+
"seg_url": data.img_to_base64(data.u8_to_overlay(pred_WH, img)),
|
315 |
"classes": data.to_classes(pred_WH),
|
316 |
}
|
317 |
|
|
|
375 |
mod_WHD = einops.rearrange(mod_BPD, "() (w h) dim -> w h dim", w=16, h=16)
|
376 |
|
377 |
logits_WHC = clf(mod_WHD)
|
378 |
+
pred_WH = logits_WHC[:, :, 1:].argmax(axis=-1) + 1
|
379 |
# pred_WH = einops.rearrange(pred_P, "(w h) -> w h", w=16, h=16)
|
380 |
return {
|
381 |
"orig_url": data.img_to_base64(data.to_sized(img)),
|
382 |
+
"seg_url": data.img_to_base64(data.u8_to_overlay(pred_WH, img)),
|
383 |
"classes": data.to_classes(pred_WH),
|
384 |
}
|
385 |
|
data.py
CHANGED
@@ -8,8 +8,9 @@ import beartype
|
|
8 |
import einops.layers.torch
|
9 |
import numpy as np
|
10 |
import requests
|
11 |
-
|
12 |
-
from
|
|
|
13 |
from torch import Tensor
|
14 |
from torchvision.transforms import v2
|
15 |
|
@@ -50,6 +51,7 @@ def make_colors() -> UInt8[np.ndarray, "n 3"]:
|
|
50 |
|
51 |
# Fixed colors. Must be synced with Segmentation.elm.
|
52 |
colors[2] = np.array([201, 249, 255], dtype=np.uint8)
|
|
|
53 |
colors[4] = np.array([151, 204, 4], dtype=np.uint8)
|
54 |
colors[13] = np.array([104, 139, 88], dtype=np.uint8)
|
55 |
colors[16] = np.array([54, 48, 32], dtype=np.uint8)
|
@@ -89,6 +91,50 @@ def to_u8(seg_raw: Image.Image) -> UInt8[Tensor, "width height"]:
|
|
89 |
return u8_transform(seg_raw)
|
90 |
|
91 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
@jaxtyped(typechecker=beartype.beartype)
|
93 |
def u8_to_img(map: UInt8[Tensor, "width height"]) -> Image.Image:
|
94 |
map = map.cpu().numpy()
|
@@ -109,7 +155,7 @@ def to_classes(map: Integer[Tensor, "width height"]) -> list[int]:
|
|
109 |
@beartype.beartype
|
110 |
def img_to_base64(img: Image.Image) -> str:
|
111 |
buf = io.BytesIO()
|
112 |
-
img.save(buf, format="webp")
|
113 |
b64 = base64.b64encode(buf.getvalue())
|
114 |
s64 = b64.decode("utf8")
|
115 |
return "data:image/webp;base64," + s64
|
|
|
8 |
import einops.layers.torch
|
9 |
import numpy as np
|
10 |
import requests
|
11 |
+
import torch
|
12 |
+
from jaxtyping import Int, Integer, UInt8, jaxtyped
|
13 |
+
from PIL import Image, ImageDraw
|
14 |
from torch import Tensor
|
15 |
from torchvision.transforms import v2
|
16 |
|
|
|
51 |
|
52 |
# Fixed colors. Must be synced with Segmentation.elm.
|
53 |
colors[2] = np.array([201, 249, 255], dtype=np.uint8)
|
54 |
+
colors[2] = np.array([201, 249, 255], dtype=np.uint8)
|
55 |
colors[4] = np.array([151, 204, 4], dtype=np.uint8)
|
56 |
colors[13] = np.array([104, 139, 88], dtype=np.uint8)
|
57 |
colors[16] = np.array([54, 48, 32], dtype=np.uint8)
|
|
|
91 |
return u8_transform(seg_raw)
|
92 |
|
93 |
|
94 |
+
@jaxtyped(typechecker=beartype.beartype)
|
95 |
+
def upsample(
|
96 |
+
x_WH: Int[Tensor, "width_ps height_ps"],
|
97 |
+
) -> UInt8[Tensor, "width_px height_px"]:
|
98 |
+
return (
|
99 |
+
torch.nn.functional.interpolate(
|
100 |
+
x_WH.view((1, 1, 16, 16)).float(),
|
101 |
+
scale_factor=28,
|
102 |
+
)
|
103 |
+
.view((448, 448))
|
104 |
+
.type(torch.uint8)
|
105 |
+
)
|
106 |
+
|
107 |
+
|
108 |
+
@jaxtyped(typechecker=beartype.beartype)
|
109 |
+
def u8_to_overlay(
|
110 |
+
map: Integer[Tensor, "width_ps height_ps"],
|
111 |
+
img: Image.Image,
|
112 |
+
*,
|
113 |
+
opacity: float = 0.5,
|
114 |
+
) -> Image.Image:
|
115 |
+
iw_np, ih_np = map.shape
|
116 |
+
iw_px, ih_px = img.size
|
117 |
+
pw_px, ph_px = iw_px // iw_np, ih_px // ih_np
|
118 |
+
|
119 |
+
# Create a transparent overlay
|
120 |
+
overlay = Image.new("RGBA", img.size, (0, 0, 0, 0))
|
121 |
+
draw = ImageDraw.Draw(overlay)
|
122 |
+
|
123 |
+
# Using semi-transparent red (255, 0, 0, alpha)
|
124 |
+
for p, i in enumerate(map.view(-1).tolist()):
|
125 |
+
x_np, y_np = p % iw_np, p // ih_np
|
126 |
+
draw.rectangle(
|
127 |
+
[
|
128 |
+
(x_np * pw_px, y_np * ph_px),
|
129 |
+
(x_np * pw_px + pw_px, y_np * ph_px + ph_px),
|
130 |
+
],
|
131 |
+
fill=(*colors[i - 1], int(opacity * 256)),
|
132 |
+
)
|
133 |
+
|
134 |
+
# Composite the original image and the overlay
|
135 |
+
return Image.alpha_composite(img.convert("RGBA"), overlay)
|
136 |
+
|
137 |
+
|
138 |
@jaxtyped(typechecker=beartype.beartype)
|
139 |
def u8_to_img(map: UInt8[Tensor, "width height"]) -> Image.Image:
|
140 |
map = map.cpu().numpy()
|
|
|
155 |
@beartype.beartype
|
156 |
def img_to_base64(img: Image.Image) -> str:
|
157 |
buf = io.BytesIO()
|
158 |
+
img.save(buf, format="webp", lossless=True)
|
159 |
b64 = base64.b64encode(buf.getvalue())
|
160 |
s64 = b64.decode("utf8")
|
161 |
return "data:image/webp;base64," + s64
|
requirements.txt
CHANGED
@@ -2,9 +2,9 @@
|
|
2 |
# uv pip compile pyproject.toml
|
3 |
aiofiles==23.2.1
|
4 |
# via gradio
|
5 |
-
aiohappyeyeballs==2.4.
|
6 |
# via aiohttp
|
7 |
-
aiohttp==3.11.
|
8 |
# via
|
9 |
# datasets
|
10 |
# fsspec
|
@@ -18,46 +18,22 @@ anyio==4.8.0
|
|
18 |
# via
|
19 |
# gradio
|
20 |
# httpx
|
21 |
-
# jupyter-server
|
22 |
# pycrdt
|
23 |
# starlette
|
24 |
-
argon2-cffi==23.1.0
|
25 |
-
# via jupyter-server
|
26 |
-
argon2-cffi-bindings==21.2.0
|
27 |
-
# via argon2-cffi
|
28 |
-
arrow==1.3.0
|
29 |
-
# via isoduration
|
30 |
-
asttokens==3.0.0
|
31 |
-
# via stack-data
|
32 |
-
async-lru==2.0.4
|
33 |
-
# via jupyterlab
|
34 |
attrs==25.1.0
|
35 |
# via
|
36 |
# aiohttp
|
37 |
# jsonschema
|
38 |
# referencing
|
39 |
-
babel==2.17.0
|
40 |
-
# via jupyterlab-server
|
41 |
beartype==0.19.0
|
42 |
# via
|
43 |
# saev-semantic-segmentation (pyproject.toml)
|
44 |
# saev
|
45 |
-
beautifulsoup4==4.13.1
|
46 |
-
# via nbconvert
|
47 |
-
bleach==6.2.0
|
48 |
-
# via nbconvert
|
49 |
-
braceexpand==0.1.7
|
50 |
-
# via webdataset
|
51 |
certifi==2025.1.31
|
52 |
# via
|
53 |
# httpcore
|
54 |
# httpx
|
55 |
# requests
|
56 |
-
# sentry-sdk
|
57 |
-
cffi==1.17.1
|
58 |
-
# via
|
59 |
-
# argon2-cffi-bindings
|
60 |
-
# pyvips
|
61 |
charset-normalizer==3.4.1
|
62 |
# via requests
|
63 |
click==8.1.8
|
@@ -65,43 +41,28 @@ click==8.1.8
|
|
65 |
# marimo
|
66 |
# typer
|
67 |
# uvicorn
|
68 |
-
# wandb
|
69 |
cloudpickle==3.1.1
|
70 |
# via submitit
|
71 |
-
comm==0.2.2
|
72 |
-
# via ipykernel
|
73 |
contourpy==1.3.1
|
74 |
# via matplotlib
|
75 |
cycler==0.12.1
|
76 |
# via matplotlib
|
77 |
-
datasets==3.2
|
78 |
# via saev
|
79 |
-
debugpy==1.8.12
|
80 |
-
# via ipykernel
|
81 |
-
decorator==5.1.1
|
82 |
-
# via ipython
|
83 |
-
defusedxml==0.7.1
|
84 |
-
# via nbconvert
|
85 |
dill==0.3.8
|
86 |
# via
|
87 |
# datasets
|
88 |
# multiprocess
|
89 |
-
docker-pycreds==0.4.0
|
90 |
-
# via wandb
|
91 |
docstring-parser==0.16
|
92 |
# via tyro
|
93 |
docutils==0.21.2
|
94 |
# via marimo
|
95 |
-
einops==0.8.
|
96 |
# via
|
97 |
# saev-semantic-segmentation (pyproject.toml)
|
98 |
# saev
|
99 |
-
executing==2.2.0
|
100 |
-
# via stack-data
|
101 |
fastapi==0.115.8
|
102 |
# via gradio
|
103 |
-
fastjsonschema==2.21.1
|
104 |
-
# via nbformat
|
105 |
ffmpy==0.5.0
|
106 |
# via gradio
|
107 |
filelock==3.17.0
|
@@ -109,15 +70,13 @@ filelock==3.17.0
|
|
109 |
# datasets
|
110 |
# huggingface-hub
|
111 |
# torch
|
112 |
-
fonttools==4.
|
113 |
# via matplotlib
|
114 |
-
fqdn==1.5.1
|
115 |
-
# via jsonschema
|
116 |
frozenlist==1.5.0
|
117 |
# via
|
118 |
# aiohttp
|
119 |
# aiosignal
|
120 |
-
fsspec==2024.
|
121 |
# via
|
122 |
# datasets
|
123 |
# gradio-client
|
@@ -125,13 +84,9 @@ fsspec==2024.9.0
|
|
125 |
# torch
|
126 |
ftfy==6.3.1
|
127 |
# via open-clip-torch
|
128 |
-
|
129 |
-
# via gitpython
|
130 |
-
gitpython==3.1.44
|
131 |
-
# via wandb
|
132 |
-
gradio==5.14.0
|
133 |
# via saev-semantic-segmentation (pyproject.toml)
|
134 |
-
gradio-client==1.7.
|
135 |
# via gradio
|
136 |
h11==0.14.0
|
137 |
# via
|
@@ -143,9 +98,8 @@ httpx==0.28.1
|
|
143 |
# via
|
144 |
# gradio
|
145 |
# gradio-client
|
146 |
-
# jupyterlab
|
147 |
# safehttpx
|
148 |
-
huggingface-hub==0.
|
149 |
# via
|
150 |
# datasets
|
151 |
# gradio
|
@@ -156,88 +110,30 @@ idna==3.10
|
|
156 |
# via
|
157 |
# anyio
|
158 |
# httpx
|
159 |
-
# jsonschema
|
160 |
# requests
|
161 |
# yarl
|
162 |
-
ipykernel==6.29.5
|
163 |
-
# via jupyterlab
|
164 |
-
ipython==8.32.0
|
165 |
-
# via ipykernel
|
166 |
-
isoduration==20.11.0
|
167 |
-
# via jsonschema
|
168 |
itsdangerous==2.2.0
|
169 |
# via marimo
|
170 |
-
jaxtyping==0.2.
|
171 |
# via saev
|
172 |
jedi==0.19.2
|
173 |
-
# via
|
174 |
-
# ipython
|
175 |
-
# marimo
|
176 |
jinja2==3.1.5
|
177 |
# via
|
178 |
# altair
|
179 |
# gradio
|
180 |
-
# jupyter-server
|
181 |
-
# jupyterlab
|
182 |
-
# jupyterlab-server
|
183 |
-
# nbconvert
|
184 |
# torch
|
185 |
-
joblib==1.4.2
|
186 |
-
# via scikit-learn
|
187 |
-
json5==0.10.0
|
188 |
-
# via jupyterlab-server
|
189 |
-
jsonpointer==3.0.0
|
190 |
-
# via jsonschema
|
191 |
jsonschema==4.23.0
|
192 |
-
# via
|
193 |
-
# altair
|
194 |
-
# jupyter-events
|
195 |
-
# jupyterlab-server
|
196 |
-
# nbformat
|
197 |
jsonschema-specifications==2024.10.1
|
198 |
# via jsonschema
|
199 |
-
jupyter-client==8.6.3
|
200 |
-
# via
|
201 |
-
# ipykernel
|
202 |
-
# jupyter-server
|
203 |
-
# nbclient
|
204 |
-
jupyter-core==5.7.2
|
205 |
-
# via
|
206 |
-
# ipykernel
|
207 |
-
# jupyter-client
|
208 |
-
# jupyter-server
|
209 |
-
# jupyterlab
|
210 |
-
# nbclient
|
211 |
-
# nbconvert
|
212 |
-
# nbformat
|
213 |
-
jupyter-events==0.12.0
|
214 |
-
# via jupyter-server
|
215 |
-
jupyter-lsp==2.2.5
|
216 |
-
# via jupyterlab
|
217 |
-
jupyter-server==2.15.0
|
218 |
-
# via
|
219 |
-
# jupyter-lsp
|
220 |
-
# jupyterlab
|
221 |
-
# jupyterlab-server
|
222 |
-
# notebook-shim
|
223 |
-
jupyter-server-terminals==0.5.3
|
224 |
-
# via jupyter-server
|
225 |
-
jupyterlab==4.3.5
|
226 |
-
# via saev
|
227 |
-
jupyterlab-pygments==0.3.0
|
228 |
-
# via nbconvert
|
229 |
-
jupyterlab-server==2.27.3
|
230 |
-
# via jupyterlab
|
231 |
kiwisolver==1.4.8
|
232 |
# via matplotlib
|
233 |
-
|
234 |
-
# via pdoc3
|
235 |
-
marimo==0.10.19
|
236 |
# via saev
|
237 |
markdown==3.7
|
238 |
# via
|
239 |
# marimo
|
240 |
-
# pdoc3
|
241 |
# pymdown-extensions
|
242 |
markdown-it-py==3.0.0
|
243 |
# via rich
|
@@ -245,18 +141,10 @@ markupsafe==2.1.5
|
|
245 |
# via
|
246 |
# gradio
|
247 |
# jinja2
|
248 |
-
# mako
|
249 |
-
# nbconvert
|
250 |
matplotlib==3.10.0
|
251 |
# via saev
|
252 |
-
matplotlib-inline==0.1.7
|
253 |
-
# via
|
254 |
-
# ipykernel
|
255 |
-
# ipython
|
256 |
mdurl==0.1.2
|
257 |
# via markdown-it-py
|
258 |
-
mistune==3.1.1
|
259 |
-
# via nbconvert
|
260 |
mpmath==1.3.0
|
261 |
# via sympy
|
262 |
multidict==6.1.0
|
@@ -265,26 +153,13 @@ multidict==6.1.0
|
|
265 |
# yarl
|
266 |
multiprocess==0.70.16
|
267 |
# via datasets
|
268 |
-
narwhals==1.
|
269 |
# via
|
270 |
# altair
|
271 |
# marimo
|
272 |
-
nbclient==0.10.2
|
273 |
-
# via nbconvert
|
274 |
-
nbconvert==7.16.6
|
275 |
-
# via jupyter-server
|
276 |
-
nbformat==5.10.4
|
277 |
-
# via
|
278 |
-
# jupyter-server
|
279 |
-
# nbclient
|
280 |
-
# nbconvert
|
281 |
-
nest-asyncio==1.6.0
|
282 |
-
# via ipykernel
|
283 |
networkx==3.4.2
|
284 |
# via torch
|
285 |
-
|
286 |
-
# via jupyterlab
|
287 |
-
numpy==2.2.2
|
288 |
# via
|
289 |
# saev-semantic-segmentation (pyproject.toml)
|
290 |
# contourpy
|
@@ -292,10 +167,7 @@ numpy==2.2.2
|
|
292 |
# gradio
|
293 |
# matplotlib
|
294 |
# pandas
|
295 |
-
# scikit-learn
|
296 |
-
# scipy
|
297 |
# torchvision
|
298 |
-
# webdataset
|
299 |
nvidia-cublas-cu12==12.4.5.8
|
300 |
# via
|
301 |
# nvidia-cudnn-cu12
|
@@ -334,8 +206,6 @@ open-clip-torch==2.30.0
|
|
334 |
# via saev
|
335 |
orjson==3.10.15
|
336 |
# via gradio
|
337 |
-
overrides==7.7.0
|
338 |
-
# via jupyter-server
|
339 |
packaging==24.2
|
340 |
# via
|
341 |
# altair
|
@@ -343,81 +213,43 @@ packaging==24.2
|
|
343 |
# gradio
|
344 |
# gradio-client
|
345 |
# huggingface-hub
|
346 |
-
# ipykernel
|
347 |
-
# jupyter-events
|
348 |
-
# jupyter-server
|
349 |
-
# jupyterlab
|
350 |
-
# jupyterlab-server
|
351 |
# marimo
|
352 |
# matplotlib
|
353 |
-
# nbconvert
|
354 |
pandas==2.2.3
|
355 |
# via
|
356 |
# datasets
|
357 |
# gradio
|
358 |
-
pandocfilters==1.5.1
|
359 |
-
# via nbconvert
|
360 |
parso==0.8.4
|
361 |
# via jedi
|
362 |
-
pdoc3==0.11.5
|
363 |
-
# via saev
|
364 |
-
pexpect==4.9.0
|
365 |
-
# via ipython
|
366 |
pillow==11.1.0
|
367 |
# via
|
368 |
# gradio
|
369 |
# matplotlib
|
370 |
# saev
|
371 |
# torchvision
|
372 |
-
|
373 |
-
# via pyvips
|
374 |
-
platformdirs==4.3.6
|
375 |
-
# via
|
376 |
-
# jupyter-core
|
377 |
-
# wandb
|
378 |
-
polars==1.21.0
|
379 |
# via saev
|
380 |
-
|
381 |
-
# via jupyter-server
|
382 |
-
prompt-toolkit==3.0.50
|
383 |
-
# via ipython
|
384 |
-
propcache==0.2.1
|
385 |
# via
|
386 |
# aiohttp
|
387 |
# yarl
|
388 |
-
|
389 |
-
# via
|
390 |
-
|
391 |
-
# via
|
392 |
-
# ipykernel
|
393 |
-
# marimo
|
394 |
-
# wandb
|
395 |
-
ptyprocess==0.7.0
|
396 |
-
# via
|
397 |
-
# pexpect
|
398 |
-
# terminado
|
399 |
-
pure-eval==0.2.3
|
400 |
-
# via stack-data
|
401 |
-
pyarrow==19.0.0
|
402 |
# via datasets
|
403 |
-
pycparser==2.22
|
404 |
-
# via cffi
|
405 |
pycrdt==0.11.1
|
406 |
# via marimo
|
407 |
pydantic==2.10.6
|
408 |
# via
|
409 |
# fastapi
|
410 |
# gradio
|
411 |
-
# wandb
|
412 |
pydantic-core==2.27.2
|
413 |
# via pydantic
|
414 |
pydub==0.25.1
|
415 |
# via gradio
|
416 |
pygments==2.19.1
|
417 |
# via
|
418 |
-
# ipython
|
419 |
# marimo
|
420 |
-
# nbconvert
|
421 |
# rich
|
422 |
pymdown-extensions==10.14.3
|
423 |
# via marimo
|
@@ -425,68 +257,43 @@ pyparsing==3.2.1
|
|
425 |
# via matplotlib
|
426 |
python-dateutil==2.9.0.post0
|
427 |
# via
|
428 |
-
# arrow
|
429 |
-
# jupyter-client
|
430 |
# matplotlib
|
431 |
# pandas
|
432 |
-
python-json-logger==3.2.1
|
433 |
-
# via jupyter-events
|
434 |
python-multipart==0.0.20
|
435 |
# via gradio
|
436 |
pytz==2025.1
|
437 |
# via pandas
|
438 |
-
pyvips==2.2.3
|
439 |
-
# via saev
|
440 |
pyyaml==6.0.2
|
441 |
# via
|
442 |
# datasets
|
443 |
# gradio
|
444 |
# huggingface-hub
|
445 |
-
# jupyter-events
|
446 |
# marimo
|
447 |
# pymdown-extensions
|
448 |
# timm
|
449 |
-
# wandb
|
450 |
-
# webdataset
|
451 |
-
pyzmq==26.2.1
|
452 |
-
# via
|
453 |
-
# ipykernel
|
454 |
-
# jupyter-client
|
455 |
-
# jupyter-server
|
456 |
referencing==0.36.2
|
457 |
# via
|
458 |
# jsonschema
|
459 |
# jsonschema-specifications
|
460 |
-
# jupyter-events
|
461 |
regex==2024.11.6
|
462 |
# via open-clip-torch
|
463 |
requests==2.32.3
|
464 |
# via
|
465 |
# datasets
|
466 |
# huggingface-hub
|
467 |
-
# jupyterlab-server
|
468 |
-
# wandb
|
469 |
-
rfc3339-validator==0.1.4
|
470 |
-
# via
|
471 |
-
# jsonschema
|
472 |
-
# jupyter-events
|
473 |
-
rfc3986-validator==0.1.1
|
474 |
-
# via
|
475 |
-
# jsonschema
|
476 |
-
# jupyter-events
|
477 |
rich==13.9.4
|
478 |
# via
|
479 |
# typer
|
480 |
# tyro
|
481 |
-
rpds-py==0.
|
482 |
# via
|
483 |
# jsonschema
|
484 |
# referencing
|
485 |
-
ruff==0.9.
|
486 |
# via
|
487 |
# gradio
|
488 |
# marimo
|
489 |
-
saev @ git+https://github.com/samuelstevens/saev@
|
490 |
# via saev-semantic-segmentation (pyproject.toml)
|
491 |
safehttpx==0.1.6
|
492 |
# via gradio
|
@@ -494,40 +301,18 @@ safetensors==0.5.2
|
|
494 |
# via
|
495 |
# open-clip-torch
|
496 |
# timm
|
497 |
-
scikit-learn==1.6.1
|
498 |
-
# via saev
|
499 |
-
scipy==1.15.1
|
500 |
-
# via scikit-learn
|
501 |
semantic-version==2.10.0
|
502 |
# via gradio
|
503 |
-
send2trash==1.8.3
|
504 |
-
# via jupyter-server
|
505 |
-
sentry-sdk==2.20.0
|
506 |
-
# via wandb
|
507 |
-
setproctitle==1.3.4
|
508 |
-
# via wandb
|
509 |
setuptools==75.8.0
|
510 |
-
# via
|
511 |
-
# jupyterlab
|
512 |
-
# torch
|
513 |
-
# wandb
|
514 |
shellingham==1.5.4
|
515 |
# via typer
|
516 |
shtab==1.7.1
|
517 |
# via tyro
|
518 |
six==1.17.0
|
519 |
-
# via
|
520 |
-
# docker-pycreds
|
521 |
-
# python-dateutil
|
522 |
-
# rfc3339-validator
|
523 |
-
smmap==5.0.2
|
524 |
-
# via gitdb
|
525 |
sniffio==1.3.1
|
526 |
# via anyio
|
527 |
-
soupsieve==2.6
|
528 |
-
# via beautifulsoup4
|
529 |
-
stack-data==0.6.3
|
530 |
-
# via ipython
|
531 |
starlette==0.45.3
|
532 |
# via
|
533 |
# fastapi
|
@@ -537,16 +322,8 @@ submitit==1.5.2
|
|
537 |
# via saev
|
538 |
sympy==1.13.1
|
539 |
# via torch
|
540 |
-
terminado==0.18.1
|
541 |
-
# via
|
542 |
-
# jupyter-server
|
543 |
-
# jupyter-server-terminals
|
544 |
-
threadpoolctl==3.5.0
|
545 |
-
# via scikit-learn
|
546 |
timm==1.0.14
|
547 |
# via open-clip-torch
|
548 |
-
tinycss2==1.4.0
|
549 |
-
# via bleach
|
550 |
tomlkit==0.13.2
|
551 |
# via
|
552 |
# gradio
|
@@ -563,46 +340,22 @@ torchvision==0.21.0
|
|
563 |
# saev-semantic-segmentation (pyproject.toml)
|
564 |
# open-clip-torch
|
565 |
# timm
|
566 |
-
tornado==6.4.2
|
567 |
-
# via
|
568 |
-
# ipykernel
|
569 |
-
# jupyter-client
|
570 |
-
# jupyter-server
|
571 |
-
# jupyterlab
|
572 |
-
# terminado
|
573 |
tqdm==4.67.1
|
574 |
# via
|
575 |
# datasets
|
576 |
# huggingface-hub
|
577 |
# open-clip-torch
|
578 |
# saev
|
579 |
-
traitlets==5.14.3
|
580 |
-
# via
|
581 |
-
# comm
|
582 |
-
# ipykernel
|
583 |
-
# ipython
|
584 |
-
# jupyter-client
|
585 |
-
# jupyter-core
|
586 |
-
# jupyter-events
|
587 |
-
# jupyter-server
|
588 |
-
# jupyterlab
|
589 |
-
# matplotlib-inline
|
590 |
-
# nbclient
|
591 |
-
# nbconvert
|
592 |
-
# nbformat
|
593 |
triton==3.2.0
|
594 |
# via torch
|
595 |
-
typeguard==4.4.
|
596 |
# via tyro
|
597 |
typer==0.15.1
|
598 |
# via gradio
|
599 |
-
types-python-dateutil==2.9.0.20241206
|
600 |
-
# via arrow
|
601 |
typing-extensions==4.12.2
|
602 |
# via
|
603 |
# altair
|
604 |
# anyio
|
605 |
-
# beautifulsoup4
|
606 |
# fastapi
|
607 |
# gradio
|
608 |
# gradio-client
|
@@ -615,40 +368,20 @@ typing-extensions==4.12.2
|
|
615 |
# typeguard
|
616 |
# typer
|
617 |
# tyro
|
618 |
-
tyro==0.9.
|
619 |
# via saev
|
620 |
tzdata==2025.1
|
621 |
# via pandas
|
622 |
-
uri-template==1.3.0
|
623 |
-
# via jsonschema
|
624 |
urllib3==2.3.0
|
625 |
-
# via
|
626 |
-
# requests
|
627 |
-
# sentry-sdk
|
628 |
uvicorn==0.34.0
|
629 |
# via
|
630 |
# gradio
|
631 |
# marimo
|
632 |
-
vl-convert-python==1.7.0
|
633 |
-
# via saev
|
634 |
wadler-lindig==0.1.3
|
635 |
# via jaxtyping
|
636 |
-
wandb==0.19.5
|
637 |
-
# via saev
|
638 |
wcwidth==0.2.13
|
639 |
-
# via
|
640 |
-
# ftfy
|
641 |
-
# prompt-toolkit
|
642 |
-
webcolors==24.11.1
|
643 |
-
# via jsonschema
|
644 |
-
webdataset==0.2.100
|
645 |
-
# via saev
|
646 |
-
webencodings==0.5.1
|
647 |
-
# via
|
648 |
-
# bleach
|
649 |
-
# tinycss2
|
650 |
-
websocket-client==1.8.0
|
651 |
-
# via jupyter-server
|
652 |
websockets==14.2
|
653 |
# via
|
654 |
# gradio-client
|
|
|
2 |
# uv pip compile pyproject.toml
|
3 |
aiofiles==23.2.1
|
4 |
# via gradio
|
5 |
+
aiohappyeyeballs==2.4.6
|
6 |
# via aiohttp
|
7 |
+
aiohttp==3.11.12
|
8 |
# via
|
9 |
# datasets
|
10 |
# fsspec
|
|
|
18 |
# via
|
19 |
# gradio
|
20 |
# httpx
|
|
|
21 |
# pycrdt
|
22 |
# starlette
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
attrs==25.1.0
|
24 |
# via
|
25 |
# aiohttp
|
26 |
# jsonschema
|
27 |
# referencing
|
|
|
|
|
28 |
beartype==0.19.0
|
29 |
# via
|
30 |
# saev-semantic-segmentation (pyproject.toml)
|
31 |
# saev
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
certifi==2025.1.31
|
33 |
# via
|
34 |
# httpcore
|
35 |
# httpx
|
36 |
# requests
|
|
|
|
|
|
|
|
|
|
|
37 |
charset-normalizer==3.4.1
|
38 |
# via requests
|
39 |
click==8.1.8
|
|
|
41 |
# marimo
|
42 |
# typer
|
43 |
# uvicorn
|
|
|
44 |
cloudpickle==3.1.1
|
45 |
# via submitit
|
|
|
|
|
46 |
contourpy==1.3.1
|
47 |
# via matplotlib
|
48 |
cycler==0.12.1
|
49 |
# via matplotlib
|
50 |
+
datasets==3.3.2
|
51 |
# via saev
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
dill==0.3.8
|
53 |
# via
|
54 |
# datasets
|
55 |
# multiprocess
|
|
|
|
|
56 |
docstring-parser==0.16
|
57 |
# via tyro
|
58 |
docutils==0.21.2
|
59 |
# via marimo
|
60 |
+
einops==0.8.1
|
61 |
# via
|
62 |
# saev-semantic-segmentation (pyproject.toml)
|
63 |
# saev
|
|
|
|
|
64 |
fastapi==0.115.8
|
65 |
# via gradio
|
|
|
|
|
66 |
ffmpy==0.5.0
|
67 |
# via gradio
|
68 |
filelock==3.17.0
|
|
|
70 |
# datasets
|
71 |
# huggingface-hub
|
72 |
# torch
|
73 |
+
fonttools==4.56.0
|
74 |
# via matplotlib
|
|
|
|
|
75 |
frozenlist==1.5.0
|
76 |
# via
|
77 |
# aiohttp
|
78 |
# aiosignal
|
79 |
+
fsspec==2024.12.0
|
80 |
# via
|
81 |
# datasets
|
82 |
# gradio-client
|
|
|
84 |
# torch
|
85 |
ftfy==6.3.1
|
86 |
# via open-clip-torch
|
87 |
+
gradio==5.16.2
|
|
|
|
|
|
|
|
|
88 |
# via saev-semantic-segmentation (pyproject.toml)
|
89 |
+
gradio-client==1.7.1
|
90 |
# via gradio
|
91 |
h11==0.14.0
|
92 |
# via
|
|
|
98 |
# via
|
99 |
# gradio
|
100 |
# gradio-client
|
|
|
101 |
# safehttpx
|
102 |
+
huggingface-hub==0.29.1
|
103 |
# via
|
104 |
# datasets
|
105 |
# gradio
|
|
|
110 |
# via
|
111 |
# anyio
|
112 |
# httpx
|
|
|
113 |
# requests
|
114 |
# yarl
|
|
|
|
|
|
|
|
|
|
|
|
|
115 |
itsdangerous==2.2.0
|
116 |
# via marimo
|
117 |
+
jaxtyping==0.2.38
|
118 |
# via saev
|
119 |
jedi==0.19.2
|
120 |
+
# via marimo
|
|
|
|
|
121 |
jinja2==3.1.5
|
122 |
# via
|
123 |
# altair
|
124 |
# gradio
|
|
|
|
|
|
|
|
|
125 |
# torch
|
|
|
|
|
|
|
|
|
|
|
|
|
126 |
jsonschema==4.23.0
|
127 |
+
# via altair
|
|
|
|
|
|
|
|
|
128 |
jsonschema-specifications==2024.10.1
|
129 |
# via jsonschema
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
130 |
kiwisolver==1.4.8
|
131 |
# via matplotlib
|
132 |
+
marimo==0.11.7
|
|
|
|
|
133 |
# via saev
|
134 |
markdown==3.7
|
135 |
# via
|
136 |
# marimo
|
|
|
137 |
# pymdown-extensions
|
138 |
markdown-it-py==3.0.0
|
139 |
# via rich
|
|
|
141 |
# via
|
142 |
# gradio
|
143 |
# jinja2
|
|
|
|
|
144 |
matplotlib==3.10.0
|
145 |
# via saev
|
|
|
|
|
|
|
|
|
146 |
mdurl==0.1.2
|
147 |
# via markdown-it-py
|
|
|
|
|
148 |
mpmath==1.3.0
|
149 |
# via sympy
|
150 |
multidict==6.1.0
|
|
|
153 |
# yarl
|
154 |
multiprocess==0.70.16
|
155 |
# via datasets
|
156 |
+
narwhals==1.27.1
|
157 |
# via
|
158 |
# altair
|
159 |
# marimo
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
160 |
networkx==3.4.2
|
161 |
# via torch
|
162 |
+
numpy==2.2.3
|
|
|
|
|
163 |
# via
|
164 |
# saev-semantic-segmentation (pyproject.toml)
|
165 |
# contourpy
|
|
|
167 |
# gradio
|
168 |
# matplotlib
|
169 |
# pandas
|
|
|
|
|
170 |
# torchvision
|
|
|
171 |
nvidia-cublas-cu12==12.4.5.8
|
172 |
# via
|
173 |
# nvidia-cudnn-cu12
|
|
|
206 |
# via saev
|
207 |
orjson==3.10.15
|
208 |
# via gradio
|
|
|
|
|
209 |
packaging==24.2
|
210 |
# via
|
211 |
# altair
|
|
|
213 |
# gradio
|
214 |
# gradio-client
|
215 |
# huggingface-hub
|
|
|
|
|
|
|
|
|
|
|
216 |
# marimo
|
217 |
# matplotlib
|
|
|
218 |
pandas==2.2.3
|
219 |
# via
|
220 |
# datasets
|
221 |
# gradio
|
|
|
|
|
222 |
parso==0.8.4
|
223 |
# via jedi
|
|
|
|
|
|
|
|
|
224 |
pillow==11.1.0
|
225 |
# via
|
226 |
# gradio
|
227 |
# matplotlib
|
228 |
# saev
|
229 |
# torchvision
|
230 |
+
polars==1.22.0
|
|
|
|
|
|
|
|
|
|
|
|
|
231 |
# via saev
|
232 |
+
propcache==0.3.0
|
|
|
|
|
|
|
|
|
233 |
# via
|
234 |
# aiohttp
|
235 |
# yarl
|
236 |
+
psutil==7.0.0
|
237 |
+
# via marimo
|
238 |
+
pyarrow==19.0.1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
239 |
# via datasets
|
|
|
|
|
240 |
pycrdt==0.11.1
|
241 |
# via marimo
|
242 |
pydantic==2.10.6
|
243 |
# via
|
244 |
# fastapi
|
245 |
# gradio
|
|
|
246 |
pydantic-core==2.27.2
|
247 |
# via pydantic
|
248 |
pydub==0.25.1
|
249 |
# via gradio
|
250 |
pygments==2.19.1
|
251 |
# via
|
|
|
252 |
# marimo
|
|
|
253 |
# rich
|
254 |
pymdown-extensions==10.14.3
|
255 |
# via marimo
|
|
|
257 |
# via matplotlib
|
258 |
python-dateutil==2.9.0.post0
|
259 |
# via
|
|
|
|
|
260 |
# matplotlib
|
261 |
# pandas
|
|
|
|
|
262 |
python-multipart==0.0.20
|
263 |
# via gradio
|
264 |
pytz==2025.1
|
265 |
# via pandas
|
|
|
|
|
266 |
pyyaml==6.0.2
|
267 |
# via
|
268 |
# datasets
|
269 |
# gradio
|
270 |
# huggingface-hub
|
|
|
271 |
# marimo
|
272 |
# pymdown-extensions
|
273 |
# timm
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
274 |
referencing==0.36.2
|
275 |
# via
|
276 |
# jsonschema
|
277 |
# jsonschema-specifications
|
|
|
278 |
regex==2024.11.6
|
279 |
# via open-clip-torch
|
280 |
requests==2.32.3
|
281 |
# via
|
282 |
# datasets
|
283 |
# huggingface-hub
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
284 |
rich==13.9.4
|
285 |
# via
|
286 |
# typer
|
287 |
# tyro
|
288 |
+
rpds-py==0.23.0
|
289 |
# via
|
290 |
# jsonschema
|
291 |
# referencing
|
292 |
+
ruff==0.9.7
|
293 |
# via
|
294 |
# gradio
|
295 |
# marimo
|
296 |
+
saev @ git+https://github.com/samuelstevens/saev@298cabdb6b771c76b402d0fdddab6907d1941d7a
|
297 |
# via saev-semantic-segmentation (pyproject.toml)
|
298 |
safehttpx==0.1.6
|
299 |
# via gradio
|
|
|
301 |
# via
|
302 |
# open-clip-torch
|
303 |
# timm
|
|
|
|
|
|
|
|
|
304 |
semantic-version==2.10.0
|
305 |
# via gradio
|
|
|
|
|
|
|
|
|
|
|
|
|
306 |
setuptools==75.8.0
|
307 |
+
# via torch
|
|
|
|
|
|
|
308 |
shellingham==1.5.4
|
309 |
# via typer
|
310 |
shtab==1.7.1
|
311 |
# via tyro
|
312 |
six==1.17.0
|
313 |
+
# via python-dateutil
|
|
|
|
|
|
|
|
|
|
|
314 |
sniffio==1.3.1
|
315 |
# via anyio
|
|
|
|
|
|
|
|
|
316 |
starlette==0.45.3
|
317 |
# via
|
318 |
# fastapi
|
|
|
322 |
# via saev
|
323 |
sympy==1.13.1
|
324 |
# via torch
|
|
|
|
|
|
|
|
|
|
|
|
|
325 |
timm==1.0.14
|
326 |
# via open-clip-torch
|
|
|
|
|
327 |
tomlkit==0.13.2
|
328 |
# via
|
329 |
# gradio
|
|
|
340 |
# saev-semantic-segmentation (pyproject.toml)
|
341 |
# open-clip-torch
|
342 |
# timm
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
343 |
tqdm==4.67.1
|
344 |
# via
|
345 |
# datasets
|
346 |
# huggingface-hub
|
347 |
# open-clip-torch
|
348 |
# saev
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
349 |
triton==3.2.0
|
350 |
# via torch
|
351 |
+
typeguard==4.4.2
|
352 |
# via tyro
|
353 |
typer==0.15.1
|
354 |
# via gradio
|
|
|
|
|
355 |
typing-extensions==4.12.2
|
356 |
# via
|
357 |
# altair
|
358 |
# anyio
|
|
|
359 |
# fastapi
|
360 |
# gradio
|
361 |
# gradio-client
|
|
|
368 |
# typeguard
|
369 |
# typer
|
370 |
# tyro
|
371 |
+
tyro==0.9.16
|
372 |
# via saev
|
373 |
tzdata==2025.1
|
374 |
# via pandas
|
|
|
|
|
375 |
urllib3==2.3.0
|
376 |
+
# via requests
|
|
|
|
|
377 |
uvicorn==0.34.0
|
378 |
# via
|
379 |
# gradio
|
380 |
# marimo
|
|
|
|
|
381 |
wadler-lindig==0.1.3
|
382 |
# via jaxtyping
|
|
|
|
|
383 |
wcwidth==0.2.13
|
384 |
+
# via ftfy
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
385 |
websockets==14.2
|
386 |
# via
|
387 |
# gradio-client
|