TabPFN / TabPFN /tabular_evaluation.py
Samuel Mueller
last tryyyy
67673f2
raw history blame
No virus
12.4 kB
import time
import os
from pathlib import Path
from tqdm import tqdm
import random
import numpy as np
from torch import nn
from utils import torch_nanmean
from datasets import *
from model_builder import load_model
from scripts.tabular_baselines import get_scoring_string
from scripts import tabular_metrics
from scripts.transformer_prediction_interface import *
from scripts.baseline_prediction_interface import *
"""
===============================
PUBLIC FUNCTIONS FOR EVALUATION
===============================
"""
def eval_model(i, e, valid_datasets, test_datasets, eval_positions, bptt, add_name, base_path, device='cpu', eval_addition='', **kwargs):
metrics_test, config_sample, model_path = eval_model_on_ds(i, e, test_datasets, eval_positions, bptt, add_name, base_path, device=device, eval_addition=eval_addition, **kwargs)
metrics_valid, _, _ = eval_model_on_ds(i, e, valid_datasets, eval_positions, bptt, add_name, base_path, device=device, eval_addition=eval_addition, **kwargs)
return {'mean_auc_test': metrics_test['mean_roc_at_1000'], 'mean_auc_valid': metrics_valid['mean_roc_at_1000'], 'mean_ce_test': metrics_test['mean_ce_at_1000'], 'mean_ce_valid': metrics_valid['mean_ce_at_1000'], 'config_sample': config_sample, 'model_path': model_path}
def eval_model_on_ds(i, e, valid_datasets, eval_positions, bptt, add_name, base_path, device='cpu', eval_addition='', **kwargs):
# How to use: evaluate_without_fitting(i,0,valid_datasets, [1024], 100000, add_name=model_string, base_path=base_path,)
def check_file(e):
model_file = f'models_diff/prior_diff_real_checkpoint{add_name}_n_{i}_epoch_{e}.cpkt'
model_path = os.path.join(base_path, model_file)
# print('Evaluate ', model_path)
results_file = os.path.join(base_path,
f'models_diff/prior_diff_real_results{add_name}_n_{i}_epoch_{e}_{eval_addition}.pkl')
if not Path(model_path).is_file(): # or Path(results_file).is_file():
# print('checkpoint exists: ', Path(model_file).is_file(), ', results are written:', Path(results_file).is_file())
return None, None, None
return model_file, model_path, results_file
if e == -1: # use last checkpoint, if e == -1
for e_ in range(100, -1, -1):
model_file_, model_path_, results_file_ = check_file(e_)
if model_file_ is not None:
e = e_
model_file, model_path, results_file = model_file_, model_path_, results_file_
break
else:
model_file, model_path, results_file = check_file(e)
model, config_sample = load_model(base_path, model_file, device, None, verbose=False)
params = {'max_features': config_sample['num_features']
, 'rescale_features': config_sample["normalize_by_used_features"]
, 'normalize_to_ranking': config_sample["normalize_to_ranking"]
, 'normalize_with_sqrt': config_sample.get("normalize_with_sqrt", False)
}
metrics_valid = evaluate(datasets=valid_datasets, model=model[2], method='transformer', device=device, overwrite=True,
extend_features=True
# just removed the style keyword but transformer is trained with style, just empty
, save=False
, metric_used=tabular_metrics.cross_entropy
, return_tensor=True
, verbose=False
, eval_positions=eval_positions
, bptt=bptt
, base_path=None
, inference_mode=True
, **params
, **kwargs)
tabular_metrics.calculate_score_per_method(tabular_metrics.auc_metric, 'roc', metrics_valid, valid_datasets, eval_positions)
tabular_metrics.calculate_score_per_method(tabular_metrics.cross_entropy, 'ce', metrics_valid, valid_datasets, eval_positions)
return metrics_valid, config_sample, model_path
def evaluate(datasets, bptt, eval_positions, metric_used, model
, verbose=False
, return_tensor=False
, **kwargs):
"""
Evaluates a list of datasets for a model function.
:param datasets: List of datasets
:param bptt: maximum sequence length
:param eval_positions: List of positions where to evaluate models
:param verbose: If True, is verbose.
:param metric_used: Which metric is optimized for.
:param return_tensor: Wheater to return results as a pytorch.tensor or numpy, this is only relevant for transformer.
:param kwargs:
:return:
"""
overall_result = {'metric_used': get_scoring_string(metric_used)
, 'bptt': bptt
, 'eval_positions': eval_positions}
aggregated_metric_datasets, num_datasets = torch.tensor(0.0), 0
# For each dataset
for [ds_name, X, y, categorical_feats, _, _] in tqdm.tqdm(datasets, desc='Iterate over datasets') if verbose else datasets:
dataset_bptt = min(len(X), bptt)
# if verbose and dataset_bptt < bptt:
# print(f'Dataset too small for given sequence length, reducing to {len(X)} ({bptt})')
aggregated_metric, num = torch.tensor(0.0), 0
ds_result = {}
for eval_position in (eval_positions if verbose else eval_positions):
eval_position_real = int(dataset_bptt * 0.5) if 2 * eval_position > dataset_bptt else eval_position
eval_position_bptt = int(eval_position_real * 2.0)
r = evaluate_position(X, y, model=model
, num_classes=len(torch.unique(y))
, categorical_feats = categorical_feats
, bptt = eval_position_bptt
, ds_name=ds_name
, eval_position = eval_position_real
, metric_used = metric_used
,**kwargs)
if r is None:
continue
_, outputs, ys, best_configs, time_used = r
if torch.is_tensor(outputs):
outputs = outputs.to(outputs.device)
ys = ys.to(outputs.device)
ys = ys.T
ds_result[f'{ds_name}_best_configs_at_{eval_position}'] = best_configs
ds_result[f'{ds_name}_outputs_at_{eval_position}'] = outputs
ds_result[f'{ds_name}_ys_at_{eval_position}'] = ys
ds_result[f'{ds_name}_time_at_{eval_position}'] = time_used
new_metric = torch_nanmean(torch.stack([metric_used(ys[i], outputs[i]) for i in range(ys.shape[0])]))
if not return_tensor:
make_scalar = lambda x: float(x.detach().cpu().numpy()) if (torch.is_tensor(x) and (len(x.shape) == 0)) else x
new_metric = make_scalar(new_metric)
ds_result = {k: make_scalar(ds_result[k]) for k in ds_result.keys()}
lib = torch if return_tensor else np
if not lib.isnan(new_metric).any():
aggregated_metric, num = aggregated_metric + new_metric, num + 1
overall_result.update(ds_result)
if num > 0:
aggregated_metric_datasets, num_datasets = (aggregated_metric_datasets + (aggregated_metric / num)), num_datasets + 1
overall_result['mean_metric'] = aggregated_metric_datasets / num_datasets
return overall_result
"""
===============================
INTERNAL HELPER FUNCTIONS
===============================
"""
def check_file_exists(path):
"""Checks if a pickle file exists. Returns None if not, else returns the unpickled file."""
if (os.path.isfile(path)):
print(f'loading results from {path}')
with open(path, 'rb') as f:
return np.load(f, allow_pickle=True).tolist()
return None
def generate_valid_split(X, y, bptt, eval_position, split_number=1):
"""Generates a deteministic train-(test/valid) split. Both splits must contain the same classes and all classes in
the entire datasets. If no such split can be sampled in 7 passes, returns None.
:param X: torch tensor, feature values
:param y: torch tensor, class values
:param bptt: Number of samples in train + test
:param eval_position: Number of samples in train, i.e. from which index values are in test
:param split_number: The split id
:return:
"""
done, seed = False, 13
torch.manual_seed(split_number)
perm = torch.randperm(X.shape[0]) if split_number > 1 else torch.arange(0, X.shape[0])
X, y = X[perm], y[perm]
while not done:
if seed > 20:
return None, None # No split could be generated in 7 passes, return None
random.seed(seed)
i = random.randint(0, len(X) - bptt) if len(X) - bptt > 0 else 0
y_ = y[i:i + bptt]
# Checks if all classes from dataset are contained and classes in train and test are equal (contain same
# classes) and
done = len(torch.unique(y_)) == len(torch.unique(y))
done = done and torch.all(torch.unique(y_) == torch.unique(y))
done = done and len(torch.unique(y_[:eval_position])) == len(torch.unique(y_[eval_position:]))
done = done and torch.all(torch.unique(y_[:eval_position]) == torch.unique(y_[eval_position:]))
seed = seed + 1
eval_xs = torch.stack([X[i:i + bptt].clone()], 1)
eval_ys = torch.stack([y[i:i + bptt].clone()], 1)
return eval_xs, eval_ys
def evaluate_position(X, y, categorical_feats, model, bptt
, eval_position, overwrite, save, base_path, path_interfix, method, ds_name, fetch_only=False
, max_time=300, split_number=1
, per_step_normalization=False, **kwargs):
"""
Evaluates a dataset with a 'bptt' number of training samples.
:param X: Dataset X
:param y: Dataset labels
:param categorical_feats: Indices of categorical features.
:param model: Model function
:param bptt: Sequence length.
:param eval_position: Number of training samples.
:param overwrite: Wheater to ove
:param overwrite: If True, results on disk are overwritten.
:param save:
:param path_interfix: Used for constructing path to write on disk.
:param method: Model name.
:param ds_name: Datset name.
:param fetch_only: Wheater to calculate or only fetch results.
:param per_step_normalization:
:param kwargs:
:return:
"""
if save:
path = os.path.join(base_path, f'results/tabular/{path_interfix}/results_{method}_{ds_name}_{eval_position}_{bptt}_{split_number}.npy')
#log_path =
## Load results if on disk
if not overwrite:
result = check_file_exists(path)
if result is not None:
if not fetch_only:
print(f'Loaded saved result for {path}')
return result
elif fetch_only:
print(f'Could not load saved result for {path}')
return None
## Generate data splits
eval_xs, eval_ys = generate_valid_split(X, y, bptt, eval_position, split_number=split_number)
if eval_xs is None:
return None
print(f"No dataset could be generated {ds_name} {bptt}")
eval_ys = (eval_ys > torch.unique(eval_ys).unsqueeze(0)).sum(axis=1).unsqueeze(-1)
start_time = time.time()
if isinstance(model, nn.Module): # Two separate predict interfaces for transformer and baselines
outputs, best_configs = transformer_predict(model, eval_xs, eval_ys, eval_position, categorical_feats=categorical_feats, **kwargs), None
else:
_, outputs, best_configs = baseline_predict(model, eval_xs, eval_ys, categorical_feats
, eval_pos=eval_position
, max_time=max_time, **kwargs)
eval_ys = eval_ys[eval_position:]
if outputs is None:
return None
if torch.is_tensor(outputs): # Transfers data to cpu for saving
outputs = outputs.cpu()
eval_ys = eval_ys.cpu()
ds_result = None, outputs, eval_ys, best_configs, time.time() - start_time
if save:
with open(path, 'wb') as f:
np.save(f, ds_result)
print(f'saved results to {path}')
return ds_result