Spaces:
Running
Running
samueldomdey
commited on
Commit
•
ab4f033
1
Parent(s):
e3f32c5
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# imports
|
2 |
+
from transformers import pipeline
|
3 |
+
import gradio as gr
|
4 |
+
import pandas as pd
|
5 |
+
|
6 |
+
# define nlp mask
|
7 |
+
model = "siebert/sentiment-roberta-large-english"
|
8 |
+
nlp = pipeline(model=model, device=0) # set device=0 to use GPU (CPU default, -1)
|
9 |
+
|
10 |
+
# perform inference on given file
|
11 |
+
def inference(df, filename):
|
12 |
+
# texts & ids
|
13 |
+
texts = df[df.columns[1]].to_list()
|
14 |
+
ids = df[df.columns[0]].to_list()
|
15 |
+
|
16 |
+
# create new df based on csv inputs
|
17 |
+
new_df = pd.DataFrame(columns=[df.columns[0], df.columns[1], "Label", "Score"])
|
18 |
+
|
19 |
+
# iterate over texts, perform inference
|
20 |
+
for index in range(len(texts)):
|
21 |
+
preds = nlp(texts[index])
|
22 |
+
pred_sentiment = preds[0]["label"]
|
23 |
+
pred_score = preds[0]["score"]
|
24 |
+
print(texts[index])
|
25 |
+
print(preds)
|
26 |
+
|
27 |
+
# write data into df
|
28 |
+
# predicted sentiment
|
29 |
+
new_df.at[index, "Label"] = pred_sentiment
|
30 |
+
# predicted score
|
31 |
+
new_df.at[index, "Score"] = pred_score
|
32 |
+
# write text
|
33 |
+
new_df.at[index, df.columns[1]] = texts[index]
|
34 |
+
# write ID
|
35 |
+
new_df.at[index, df.columns[0]] = ids[index]
|
36 |
+
|
37 |
+
# export new file
|
38 |
+
n_filename = filename.name.split(".")[0] + "_csiebert_sentiment.csv"
|
39 |
+
new_df.to_csv(n_filename, index=False)
|
40 |
+
|
41 |
+
# return new file
|
42 |
+
return n_filename
|
43 |
+
|
44 |
+
# handle file reading for both csv and excel files
|
45 |
+
def read_file(filename):
|
46 |
+
# check type of input file
|
47 |
+
if filename.name.split(".")[1] == "csv":
|
48 |
+
print("entered")
|
49 |
+
# read file, drop index if exists
|
50 |
+
df = pd.read_csv(filename.name, index_col=False)
|
51 |
+
# perform inference on given .csv file
|
52 |
+
result = inference(df=df, filename=filename)
|
53 |
+
print("computed")
|
54 |
+
return result
|
55 |
+
elif filename.name.split(".")[1] == "xlsx":
|
56 |
+
df = pd.read_excel(filename.name, index_col=False)
|
57 |
+
# handle Unnamed
|
58 |
+
if df.columns[0] == "Unnamed: 0":
|
59 |
+
df = df.drop("Unnamed: 0", axis=1)
|
60 |
+
# perform inference on given .xlsx file
|
61 |
+
result = inference(df=df, filename=filename)
|
62 |
+
return result
|
63 |
+
# if neither csv nor xlsx provided -> exit
|
64 |
+
else:
|
65 |
+
return
|
66 |
+
|
67 |
+
gr.Interface(read_file,
|
68 |
+
inputs=[gr.inputs.File(label="Input file")],
|
69 |
+
outputs=[gr.outputs.File(label="Output file")],
|
70 |
+
description="Sentiment analysis: Input a csv/xlsx of form ID, Text. App performs sentiment analysis on Texts and exports results as new csv to download.",
|
71 |
+
allow_flagging=False,
|
72 |
+
layout="horizontal",
|
73 |
+
).launch()
|