add tt3d with prostt5 predictino of 3di sequences
Browse files- .gitignore +6 -0
- app.py +123 -21
- dscript_architecture1.png +0 -0
- predict_3di.py +354 -0
- requirements.txt +2 -0
.gitignore
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
__pycache__/
|
2 |
+
models
|
3 |
+
cnn_chkpnt
|
4 |
+
foldseek
|
5 |
+
*.fasta
|
6 |
+
*.tar.gz
|
app.py
CHANGED
@@ -1,52 +1,151 @@
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import pandas as pd
|
|
|
3 |
from pathlib import Path
|
4 |
from Bio import SeqIO
|
5 |
from dscript.pretrained import get_pretrained
|
6 |
from dscript.language_model import lm_embed
|
7 |
from tqdm.auto import tqdm
|
8 |
from uuid import uuid4
|
|
|
9 |
|
10 |
model_map = {
|
11 |
"D-SCRIPT": "human_v1",
|
12 |
-
"Topsy-Turvy": "human_v2"
|
|
|
13 |
}
|
14 |
|
15 |
-
|
16 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
run_id = uuid4()
|
|
|
18 |
|
19 |
-
gr.Info("Loading model...")
|
20 |
-
_ = lm_embed("M")
|
21 |
|
22 |
-
model = get_pretrained(model_map[
|
23 |
|
24 |
-
gr.Info("Loading files...")
|
25 |
try:
|
26 |
seqs = SeqIO.to_dict(SeqIO.parse(sequence_file.name, "fasta"))
|
27 |
-
except ValueError as
|
28 |
-
gr.Error("Invalid FASTA file - duplicate entry")
|
29 |
|
30 |
if Path(pairs_file.name).suffix == ".csv":
|
31 |
pairs = pd.read_csv(pairs_file.name)
|
32 |
elif Path(pairs_file.name).suffix == ".tsv":
|
33 |
pairs = pd.read_csv(pairs_file.name, sep="\t")
|
34 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
-
|
37 |
results = []
|
38 |
-
|
39 |
-
|
40 |
-
|
|
|
41 |
prot1 = r["protein1"]
|
42 |
prot2 = r["protein2"]
|
|
|
43 |
seq1 = str(seqs[prot1].seq)
|
44 |
seq2 = str(seqs[prot2].seq)
|
|
|
|
|
|
|
|
|
45 |
lm1 = lm_embed(seq1)
|
46 |
lm2 = lm_embed(seq2)
|
47 |
-
|
|
|
|
|
|
|
48 |
results.append([prot1, prot2, interaction])
|
49 |
-
progress((i, len(pairs)))
|
50 |
|
51 |
results = pd.DataFrame(results, columns = ["Protein 1", "Protein 2", "Interaction"])
|
52 |
|
@@ -59,16 +158,19 @@ def predict(model, sequence_file, pairs_file):
|
|
59 |
demo = gr.Interface(
|
60 |
fn=predict,
|
61 |
inputs = [
|
62 |
-
gr.Dropdown(label="Model", choices = ["D-SCRIPT", "Topsy-Turvy"], value = "Topsy-Turvy"),
|
|
|
63 |
gr.File(label="Sequences (.fasta)", file_types = [".fasta"]),
|
64 |
-
gr.File(label="Pairs (.csv/.tsv)", file_types = [".csv", ".tsv"])
|
65 |
],
|
66 |
outputs = [
|
67 |
gr.DataFrame(label='Results', headers=['Protein 1', 'Protein 2', 'Interaction']),
|
68 |
gr.File(label="Download results", type="file")
|
69 |
-
]
|
|
|
|
|
|
|
|
|
70 |
)
|
71 |
|
72 |
if __name__ == "__main__":
|
73 |
-
demo.queue(max_size=20)
|
74 |
-
demo.launch()
|
|
|
1 |
+
import time
|
2 |
+
|
3 |
import gradio as gr
|
4 |
import pandas as pd
|
5 |
+
import torch
|
6 |
from pathlib import Path
|
7 |
from Bio import SeqIO
|
8 |
from dscript.pretrained import get_pretrained
|
9 |
from dscript.language_model import lm_embed
|
10 |
from tqdm.auto import tqdm
|
11 |
from uuid import uuid4
|
12 |
+
from predict_3di import get_3di_sequences, predictions_to_dict, one_hot_3di_sequence
|
13 |
|
14 |
model_map = {
|
15 |
"D-SCRIPT": "human_v1",
|
16 |
+
"Topsy-Turvy": "human_v2",
|
17 |
+
"TT3D": "human_tt3d",
|
18 |
}
|
19 |
|
20 |
+
theme = "Default"
|
21 |
+
title = "D-SCRIPT: Predicting Protein-Protein Interactions"
|
22 |
+
description = """
|
23 |
+
"""
|
24 |
+
|
25 |
+
article = """
|
26 |
+
|
27 |
+
<hr>
|
28 |
+
|
29 |
+
<img style="margin-left:auto; margin-right:auto" src="https://raw.githubusercontent.com/samsledje/D-SCRIPT/main/docs/source/img/dscript_architecture.png" alt="D-SCRIPT architecture" width="70%"/>
|
30 |
+
|
31 |
+
<hr>
|
32 |
+
|
33 |
+
D-SCRIPT is a deep learning method for predicting a physical interaction between two proteins given just their sequences.
|
34 |
+
It generalizes well to new species and is robust to limitations in training data size. Its design reflects the intuition that for two proteins to physically interact,
|
35 |
+
a subset of amino acids from each protein should be in contact with the other. The intermediate stages of D-SCRIPT directly implement this intuition, with the penultimate stage
|
36 |
+
in D-SCRIPT being a rough estimate of the inter-protein contact map of the protein dimer. This structurally-motivated design enhances the interpretability of the results and,
|
37 |
+
since structure is more conserved evolutionarily than sequence, improves generalizability across species.
|
38 |
+
|
39 |
+
<hr>
|
40 |
+
|
41 |
+
Computational methods to predict protein-protein interaction (PPI) typically segregate into sequence-based "bottom-up" methods that infer properties from the characteristics of the
|
42 |
+
individual protein sequences, or global "top-down" methods that infer properties from the pattern of already known PPIs in the species of interest. However, a way to incorporate
|
43 |
+
top-down insights into sequence-based bottom-up PPI prediction methods has been elusive. Topsy-Turvy builds upon D-SCRIPT by synthesizing both views in a sequence-based,
|
44 |
+
multi-scale, deep-learning model for PPI prediction. While Topsy-Turvy makes predictions using only sequence data, during the training phase it takes a transfer-learning approach by
|
45 |
+
incorporating patterns from both global and molecular-level views of protein interaction. In a cross-species context, we show it achieves state-of-the-art performance, offering the
|
46 |
+
ability to perform genome-scale, interpretable PPI prediction for non-model organisms with no existing experimental PPI data.
|
47 |
+
|
48 |
+
|
49 |
+
"""
|
50 |
+
|
51 |
+
fold_vocab = {
|
52 |
+
"D": 0,
|
53 |
+
"P": 1,
|
54 |
+
"V": 2,
|
55 |
+
"Q": 3,
|
56 |
+
"A": 4,
|
57 |
+
"W": 5,
|
58 |
+
"K": 6,
|
59 |
+
"E": 7,
|
60 |
+
"I": 8,
|
61 |
+
"T": 9,
|
62 |
+
"L": 10,
|
63 |
+
"F": 11,
|
64 |
+
"G": 12,
|
65 |
+
"S": 13,
|
66 |
+
"M": 14,
|
67 |
+
"H": 15,
|
68 |
+
"C": 16,
|
69 |
+
"R": 17,
|
70 |
+
"Y": 18,
|
71 |
+
"N": 19,
|
72 |
+
"X": 20,
|
73 |
+
}
|
74 |
+
|
75 |
+
def predict(model_name, pairs_file, sequence_file, progress = gr.Progress()):
|
76 |
+
|
77 |
run_id = uuid4()
|
78 |
+
device = torch.cuda("0") if torch.cuda.is_available() else torch.device("cpu")
|
79 |
|
80 |
+
# gr.Info("Loading model...")
|
81 |
+
_ = lm_embed("M", use_cuda = (device.type == "cuda"))
|
82 |
|
83 |
+
model = get_pretrained(model_map[model_name]).to(device)
|
84 |
|
85 |
+
# gr.Info("Loading files...")
|
86 |
try:
|
87 |
seqs = SeqIO.to_dict(SeqIO.parse(sequence_file.name, "fasta"))
|
88 |
+
except ValueError as _:
|
89 |
+
raise gr.Error("Invalid FASTA file - duplicate entry")
|
90 |
|
91 |
if Path(pairs_file.name).suffix == ".csv":
|
92 |
pairs = pd.read_csv(pairs_file.name)
|
93 |
elif Path(pairs_file.name).suffix == ".tsv":
|
94 |
pairs = pd.read_csv(pairs_file.name, sep="\t")
|
95 |
+
try:
|
96 |
+
pairs.columns = ["protein1", "protein2"]
|
97 |
+
except ValueError as _:
|
98 |
+
raise gr.Error("Invalid pairs file - must have two columns 'protein1' and 'protein2'")
|
99 |
+
|
100 |
+
do_foldseek = False
|
101 |
+
if model_name == "TT3D":
|
102 |
+
do_foldseek = True
|
103 |
+
|
104 |
+
need_to_translate = set(pairs["protein1"]).union(set(pairs["protein2"]))
|
105 |
+
seqs_to_translate = {k: str(seqs[k].seq) for k in need_to_translate if k in seqs}
|
106 |
+
|
107 |
+
half_precision = False
|
108 |
+
assert not (half_precision and device=="cpu"), print("Running fp16 on CPU is not supported, yet")
|
109 |
+
|
110 |
+
gr.Info(f"Loading Foldseek embeddings -- this may take some time ({len(seqs_to_translate)} embeddings)...")
|
111 |
+
predictions = get_3di_sequences(
|
112 |
+
seqs_to_translate,
|
113 |
+
model_dir = "Rostlab/ProstT5",
|
114 |
+
report_fn = gr.Info,
|
115 |
+
error_fn = gr.Error,
|
116 |
+
device=device,
|
117 |
+
)
|
118 |
+
foldseek_sequences = predictions_to_dict(predictions)
|
119 |
+
foldseek_embeddings = {k: one_hot_3di_sequence(s.upper(), fold_vocab) for k, s in foldseek_sequences.items()}
|
120 |
+
|
121 |
+
# for k in seqs_to_translate.keys():
|
122 |
+
# print(seqs_to_translate[k])
|
123 |
+
# print(len(seqs_to_translate[k]))
|
124 |
+
# print(foldseek_embeddings[k])
|
125 |
+
# print(foldseek_embeddings[k].shape)
|
126 |
|
127 |
+
progress(0, desc="Starting...")
|
128 |
results = []
|
129 |
+
for i in progress.tqdm(range(len(pairs))):
|
130 |
+
|
131 |
+
r = pairs.iloc[i]
|
132 |
+
|
133 |
prot1 = r["protein1"]
|
134 |
prot2 = r["protein2"]
|
135 |
+
|
136 |
seq1 = str(seqs[prot1].seq)
|
137 |
seq2 = str(seqs[prot2].seq)
|
138 |
+
|
139 |
+
fold1 = foldseek_embeddings[prot1] if do_foldseek else None
|
140 |
+
fold2 = foldseek_embeddings[prot2] if do_foldseek else None
|
141 |
+
|
142 |
lm1 = lm_embed(seq1)
|
143 |
lm2 = lm_embed(seq2)
|
144 |
+
|
145 |
+
print(lm1.shape, lm2.shape, fold1.shape, fold2.shape)
|
146 |
+
interaction = model.predict(lm1, lm2, embed_foldseek = do_foldseek, f0 = fold1, f1 = fold2).item()
|
147 |
+
|
148 |
results.append([prot1, prot2, interaction])
|
|
|
149 |
|
150 |
results = pd.DataFrame(results, columns = ["Protein 1", "Protein 2", "Interaction"])
|
151 |
|
|
|
158 |
demo = gr.Interface(
|
159 |
fn=predict,
|
160 |
inputs = [
|
161 |
+
gr.Dropdown(label="Model", choices = ["D-SCRIPT", "Topsy-Turvy", "TT3D"], value = "Topsy-Turvy"),
|
162 |
+
gr.File(label="Pairs (.csv/.tsv)", file_types = [".csv", ".tsv"]),
|
163 |
gr.File(label="Sequences (.fasta)", file_types = [".fasta"]),
|
|
|
164 |
],
|
165 |
outputs = [
|
166 |
gr.DataFrame(label='Results', headers=['Protein 1', 'Protein 2', 'Interaction']),
|
167 |
gr.File(label="Download results", type="file")
|
168 |
+
],
|
169 |
+
title = title,
|
170 |
+
description = description,
|
171 |
+
article = article,
|
172 |
+
theme = theme,
|
173 |
)
|
174 |
|
175 |
if __name__ == "__main__":
|
176 |
+
demo.queue(max_size=20).launch()
|
|
dscript_architecture1.png
ADDED
predict_3di.py
ADDED
@@ -0,0 +1,354 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
# -*- coding: utf-8 -*-
|
3 |
+
"""
|
4 |
+
Created on Fri Jun 16 14:27:44 2023
|
5 |
+
|
6 |
+
@author: mheinzinger
|
7 |
+
"""
|
8 |
+
|
9 |
+
import argparse
|
10 |
+
import time
|
11 |
+
from pathlib import Path
|
12 |
+
|
13 |
+
from urllib import request
|
14 |
+
import shutil
|
15 |
+
|
16 |
+
import numpy as np
|
17 |
+
import torch
|
18 |
+
from torch import nn
|
19 |
+
from transformers import T5EncoderModel, T5Tokenizer
|
20 |
+
|
21 |
+
|
22 |
+
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
|
23 |
+
print("Using device: {}".format(device))
|
24 |
+
|
25 |
+
|
26 |
+
# Convolutional neural network (two convolutional layers)
|
27 |
+
class CNN(nn.Module):
|
28 |
+
def __init__( self ):
|
29 |
+
super(CNN, self).__init__()
|
30 |
+
|
31 |
+
self.classifier = nn.Sequential(
|
32 |
+
nn.Conv2d(1024, 32, kernel_size=(7, 1), padding=(3, 0)), # 7x32
|
33 |
+
nn.ReLU(),
|
34 |
+
nn.Dropout(0.0),
|
35 |
+
nn.Conv2d(32, 20, kernel_size=(7, 1), padding=(3, 0))
|
36 |
+
)
|
37 |
+
|
38 |
+
def forward(self, x):
|
39 |
+
"""
|
40 |
+
L = protein length
|
41 |
+
B = batch-size
|
42 |
+
F = number of features (1024 for embeddings)
|
43 |
+
N = number of classes (20 for 3Di)
|
44 |
+
"""
|
45 |
+
x = x.permute(0, 2, 1).unsqueeze(dim=-1) # IN: X = (B x L x F); OUT: (B x F x L, 1)
|
46 |
+
Yhat = self.classifier(x) # OUT: Yhat_consurf = (B x N x L x 1)
|
47 |
+
Yhat = Yhat.squeeze(dim=-1) # IN: (B x N x L x 1); OUT: ( B x L x N )
|
48 |
+
return Yhat
|
49 |
+
|
50 |
+
def one_hot_3di_sequence(sequence, vocab):
|
51 |
+
foldseek_enc = torch.zeros(
|
52 |
+
len(sequence), len(vocab), dtype=torch.float32
|
53 |
+
)
|
54 |
+
for i, a in enumerate(sequence):
|
55 |
+
assert a in vocab
|
56 |
+
foldseek_enc[i, vocab[a]] = 1
|
57 |
+
return foldseek_enc.unsqueeze(0)
|
58 |
+
|
59 |
+
|
60 |
+
def get_T5_model(model_dir):
|
61 |
+
print("Loading T5 from: {}".format(model_dir))
|
62 |
+
model = T5EncoderModel.from_pretrained(model_dir).to(device)
|
63 |
+
model = model.eval()
|
64 |
+
vocab = T5Tokenizer.from_pretrained(model_dir, do_lower_case=False )
|
65 |
+
return model, vocab
|
66 |
+
|
67 |
+
|
68 |
+
def read_fasta( fasta_path, split_char, id_field ):
|
69 |
+
'''
|
70 |
+
Reads in fasta file containing multiple sequences.
|
71 |
+
Returns dictionary of holding multiple sequences or only single
|
72 |
+
sequence, depending on input file.
|
73 |
+
'''
|
74 |
+
|
75 |
+
sequences = dict()
|
76 |
+
with open( fasta_path, 'r' ) as fasta_f:
|
77 |
+
for line in fasta_f:
|
78 |
+
# get uniprot ID from header and create new entry
|
79 |
+
if line.startswith('>'):
|
80 |
+
uniprot_id = line.replace('>', '').strip().split(split_char)[id_field]
|
81 |
+
# replace tokens that are mis-interpreted when loading h5
|
82 |
+
uniprot_id = uniprot_id.replace("/","_").replace(".","_")
|
83 |
+
sequences[ uniprot_id ] = ''
|
84 |
+
else:
|
85 |
+
s = ''.join( line.split() ).replace("-","")
|
86 |
+
|
87 |
+
if s.islower(): # sanity check to avoid mix-up of 3Di and AA input
|
88 |
+
print("The input file was in lower-case which indicates 3Di-input." +
|
89 |
+
"This predictor only operates on amino-acid-input (upper-case)." +
|
90 |
+
"Exiting now ..."
|
91 |
+
)
|
92 |
+
return None
|
93 |
+
else:
|
94 |
+
sequences[ uniprot_id ] += s
|
95 |
+
return sequences
|
96 |
+
|
97 |
+
def write_predictions(predictions, out_path):
|
98 |
+
ss_mapping = {
|
99 |
+
0: "A",
|
100 |
+
1: "C",
|
101 |
+
2: "D",
|
102 |
+
3: "E",
|
103 |
+
4: "F",
|
104 |
+
5: "G",
|
105 |
+
6: "H",
|
106 |
+
7: "I",
|
107 |
+
8: "K",
|
108 |
+
9: "L",
|
109 |
+
10: "M",
|
110 |
+
11: "N",
|
111 |
+
12: "P",
|
112 |
+
13: "Q",
|
113 |
+
14: "R",
|
114 |
+
15: "S",
|
115 |
+
16: "T",
|
116 |
+
17: "V",
|
117 |
+
18: "W",
|
118 |
+
19: "Y"
|
119 |
+
}
|
120 |
+
|
121 |
+
with open(out_path, 'w+') as out_f:
|
122 |
+
out_f.write( '\n'.join(
|
123 |
+
[ ">{}\n{}".format(
|
124 |
+
seq_id, "".join(list(map(lambda yhat: ss_mapping[int(yhat)], yhats))) )
|
125 |
+
for seq_id, yhats in predictions.items()
|
126 |
+
]
|
127 |
+
) )
|
128 |
+
print(f"Finished writing results to {out_path}")
|
129 |
+
return None
|
130 |
+
|
131 |
+
def predictions_to_dict(predictions):
|
132 |
+
ss_mapping = {
|
133 |
+
0: "A",
|
134 |
+
1: "C",
|
135 |
+
2: "D",
|
136 |
+
3: "E",
|
137 |
+
4: "F",
|
138 |
+
5: "G",
|
139 |
+
6: "H",
|
140 |
+
7: "I",
|
141 |
+
8: "K",
|
142 |
+
9: "L",
|
143 |
+
10: "M",
|
144 |
+
11: "N",
|
145 |
+
12: "P",
|
146 |
+
13: "Q",
|
147 |
+
14: "R",
|
148 |
+
15: "S",
|
149 |
+
16: "T",
|
150 |
+
17: "V",
|
151 |
+
18: "W",
|
152 |
+
19: "Y"
|
153 |
+
}
|
154 |
+
|
155 |
+
results = {seq_id: "".join(list(map(lambda yhat: ss_mapping[int(yhat)], yhats))) for seq_id, yhats in predictions.items()}
|
156 |
+
return results
|
157 |
+
|
158 |
+
def toCPU(tensor):
|
159 |
+
if len(tensor.shape) > 1:
|
160 |
+
return tensor.detach().cpu().squeeze(dim=-1).numpy()
|
161 |
+
else:
|
162 |
+
return tensor.detach().cpu().numpy()
|
163 |
+
|
164 |
+
|
165 |
+
def download_file(url,local_path):
|
166 |
+
if not local_path.parent.is_dir():
|
167 |
+
local_path.parent.mkdir()
|
168 |
+
|
169 |
+
print("Downloading: {}".format(url))
|
170 |
+
req = request.Request(url, headers={
|
171 |
+
'User-Agent' : 'Mozilla/5.0 (Windows NT 6.1; Win64; x64)'
|
172 |
+
})
|
173 |
+
|
174 |
+
with request.urlopen(req) as response, open(local_path, 'wb') as outfile:
|
175 |
+
shutil.copyfileobj(response, outfile)
|
176 |
+
return None
|
177 |
+
|
178 |
+
|
179 |
+
def load_predictor( weights_link="https://rostlab.org/~deepppi/prostt5/cnn_chkpnt/model.pt" , device=torch.device("cpu")):
|
180 |
+
model = CNN()
|
181 |
+
checkpoint_p = Path.cwd() / "cnn_chkpnt" / "model.pt"
|
182 |
+
# if no pre-trained model is available, yet --> download it
|
183 |
+
if not checkpoint_p.exists():
|
184 |
+
download_file(weights_link, checkpoint_p)
|
185 |
+
|
186 |
+
state = torch.load(checkpoint_p, map_location=device)
|
187 |
+
|
188 |
+
model.load_state_dict(state["state_dict"])
|
189 |
+
|
190 |
+
model = model.eval()
|
191 |
+
model = model.to(device)
|
192 |
+
|
193 |
+
return model
|
194 |
+
|
195 |
+
|
196 |
+
def get_3di_sequences( seq_dict, model_dir, device,
|
197 |
+
max_residues=4000, max_seq_len=1000, max_batch=100,report_fn=print,error_fn=print,half_precision=False):
|
198 |
+
|
199 |
+
predictions = dict()
|
200 |
+
|
201 |
+
prefix = "<AA2fold>"
|
202 |
+
|
203 |
+
model, vocab = get_T5_model(model_dir)
|
204 |
+
predictor = load_predictor(device=device)
|
205 |
+
|
206 |
+
if half_precision:
|
207 |
+
model = model.half()
|
208 |
+
predictor = predictor.half()
|
209 |
+
|
210 |
+
report_fn('Total number of sequences: {}'.format(len(seq_dict)))
|
211 |
+
|
212 |
+
avg_length = sum([ len(seq) for _, seq in seq_dict.items()]) / len(seq_dict)
|
213 |
+
n_long = sum([ 1 for _, seq in seq_dict.items() if len(seq)>max_seq_len])
|
214 |
+
# sort sequences by length to trigger OOM at the beginning
|
215 |
+
seq_dict = sorted( seq_dict.items(), key=lambda kv: len( seq_dict[kv[0]] ), reverse=True )
|
216 |
+
|
217 |
+
report_fn("Average sequence length: {}".format(avg_length))
|
218 |
+
report_fn("Number of sequences >{}: {}".format(max_seq_len, n_long))
|
219 |
+
|
220 |
+
start = time.time()
|
221 |
+
batch = list()
|
222 |
+
for seq_idx, (pdb_id, seq) in enumerate(seq_dict,1):
|
223 |
+
# replace non-standard AAs
|
224 |
+
seq = seq.replace('U','X').replace('Z','X').replace('O','X')
|
225 |
+
seq_len = len(seq)
|
226 |
+
seq = prefix + ' ' + ' '.join(list(seq))
|
227 |
+
batch.append((pdb_id,seq,seq_len))
|
228 |
+
|
229 |
+
# count residues in current batch and add the last sequence length to
|
230 |
+
# avoid that batches with (n_res_batch > max_residues) get processed
|
231 |
+
n_res_batch = sum([ s_len for _, _, s_len in batch ]) + seq_len
|
232 |
+
if len(batch) >= max_batch or n_res_batch>=max_residues or seq_idx==len(seq_dict) or seq_len>max_seq_len:
|
233 |
+
pdb_ids, seqs, seq_lens = zip(*batch)
|
234 |
+
batch = list()
|
235 |
+
|
236 |
+
token_encoding = vocab.batch_encode_plus(seqs,
|
237 |
+
add_special_tokens=True,
|
238 |
+
padding="longest",
|
239 |
+
return_tensors='pt'
|
240 |
+
).to(device)
|
241 |
+
try:
|
242 |
+
with torch.no_grad():
|
243 |
+
embedding_repr = model(token_encoding.input_ids,
|
244 |
+
attention_mask=token_encoding.attention_mask
|
245 |
+
)
|
246 |
+
except RuntimeError:
|
247 |
+
error_fn("RuntimeError during embedding for {} (L={})".format(
|
248 |
+
pdb_id, seq_len)
|
249 |
+
)
|
250 |
+
continue
|
251 |
+
|
252 |
+
# ProtT5 appends a special tokens at the end of each sequence
|
253 |
+
# Mask this also out during inference while taking into account the prefix
|
254 |
+
for idx, s_len in enumerate(seq_lens):
|
255 |
+
token_encoding.attention_mask[idx,s_len+1] = 0
|
256 |
+
|
257 |
+
# extract last hidden states (=embeddings)
|
258 |
+
residue_embedding = embedding_repr.last_hidden_state.detach()
|
259 |
+
# mask out padded elements in the attention output (can be non-zero) for further processing/prediction
|
260 |
+
residue_embedding = residue_embedding*token_encoding.attention_mask.unsqueeze(dim=-1)
|
261 |
+
# slice off embedding of special token prepended before to each sequence
|
262 |
+
residue_embedding = residue_embedding[:,1:]
|
263 |
+
|
264 |
+
prediction = predictor(residue_embedding)
|
265 |
+
prediction = toCPU(torch.max( prediction, dim=1, keepdim=True )[1] ).astype(np.byte)
|
266 |
+
|
267 |
+
# batch-size x seq_len x embedding_dim
|
268 |
+
# extra token is added at the end of the seq
|
269 |
+
for batch_idx, identifier in enumerate(pdb_ids):
|
270 |
+
s_len = seq_lens[batch_idx]
|
271 |
+
# slice off padding and special token appended to the end of the sequence
|
272 |
+
predictions[identifier] = prediction[batch_idx,:, 0:s_len].squeeze()
|
273 |
+
assert s_len == len(predictions[identifier]), error_fn(f"Length mismatch for {identifier}: is:{len(predictions[identifier])} vs should:{s_len}")
|
274 |
+
|
275 |
+
end = time.time()
|
276 |
+
report_fn('Total number of predictions: {}'.format(len(predictions)))
|
277 |
+
report_fn('Total time: {:.2f}[s]; time/prot: {:.4f}[s]; avg. len= {:.2f}'.format(
|
278 |
+
end-start, (end-start)/len(predictions), avg_length))
|
279 |
+
|
280 |
+
return predictions
|
281 |
+
|
282 |
+
|
283 |
+
def create_arg_parser():
|
284 |
+
""""Creates and returns the ArgumentParser object."""
|
285 |
+
|
286 |
+
# Instantiate the parser
|
287 |
+
parser = argparse.ArgumentParser(description=(
|
288 |
+
'embed.py creates ProstT5-Encoder embeddings for a given text '+
|
289 |
+
' file containing sequence(s) in FASTA-format.' +
|
290 |
+
'Example: python predict_3Di.py --input /path/to/some_AA_sequences.fasta --output /path/to/some_3Di_sequences.fasta --half 1' ) )
|
291 |
+
|
292 |
+
# Required positional argument
|
293 |
+
parser.add_argument( '-i', '--input', required=True, type=str,
|
294 |
+
help='A path to a fasta-formatted text file containing protein sequence(s).')
|
295 |
+
|
296 |
+
# Optional positional argument
|
297 |
+
parser.add_argument( '-o', '--output', required=True, type=str,
|
298 |
+
help='A path for saving the created embeddings as NumPy npz file.')
|
299 |
+
|
300 |
+
|
301 |
+
# Required positional argument
|
302 |
+
parser.add_argument('--model', required=False, type=str,
|
303 |
+
default="Rostlab/ProstT5",
|
304 |
+
help='Either a path to a directory holding the checkpoint for a pre-trained model or a huggingface repository link.' )
|
305 |
+
|
306 |
+
# Optional argument
|
307 |
+
parser.add_argument('--split_char', type=str,
|
308 |
+
default='!',
|
309 |
+
help='The character for splitting the FASTA header in order to retrieve ' +
|
310 |
+
"the protein identifier. Should be used in conjunction with --id." +
|
311 |
+
"Default: '!' ")
|
312 |
+
|
313 |
+
# Optional argument
|
314 |
+
parser.add_argument('--id', type=int,
|
315 |
+
default=0,
|
316 |
+
help='The index for the uniprot identifier field after splitting the ' +
|
317 |
+
"FASTA header after each symbole in ['|', '#', ':', ' ']." +
|
318 |
+
'Default: 0')
|
319 |
+
|
320 |
+
parser.add_argument('--half', type=int,
|
321 |
+
default=1,
|
322 |
+
help="Whether to use half_precision or not. Default: 1 (half-precision)")
|
323 |
+
|
324 |
+
return parser
|
325 |
+
|
326 |
+
def main():
|
327 |
+
parser = create_arg_parser()
|
328 |
+
args = parser.parse_args()
|
329 |
+
|
330 |
+
seq_path = Path( args.input ) # path to input FASTAS
|
331 |
+
out_path = Path( args.output) # path where predictions should be written to
|
332 |
+
model_dir = args.model # path/repo_link to checkpoint
|
333 |
+
|
334 |
+
if out_path.is_file():
|
335 |
+
print("Output file is already existing and will be overwritten ...")
|
336 |
+
|
337 |
+
split_char = args.split_char
|
338 |
+
id_field = args.id
|
339 |
+
|
340 |
+
half_precision = False if int(args.half) == 0 else True
|
341 |
+
assert not (half_precision and device=="cpu"), print("Running fp16 on CPU is not supported, yet")
|
342 |
+
|
343 |
+
seq_dict = read_fasta( seq_path, split_char, id_field )
|
344 |
+
predictions = get_3di_sequences(
|
345 |
+
seq_dict,
|
346 |
+
model_dir,
|
347 |
+
)
|
348 |
+
|
349 |
+
print("Writing results now to disk ...")
|
350 |
+
write_predictions(predictions,out_path)
|
351 |
+
|
352 |
+
|
353 |
+
if __name__ == '__main__':
|
354 |
+
main()
|
requirements.txt
CHANGED
@@ -2,3 +2,5 @@ dscript
|
|
2 |
biopython
|
3 |
pandas
|
4 |
tqdm
|
|
|
|
|
|
2 |
biopython
|
3 |
pandas
|
4 |
tqdm
|
5 |
+
transformers
|
6 |
+
sentencepiece
|