sampathlonka commited on
Commit
1e534f0
1 Parent(s): 61424c8
Files changed (2) hide show
  1. src/FunctionTools.py +249 -0
  2. src/app.py +149 -0
src/FunctionTools.py ADDED
@@ -0,0 +1,249 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ import chardet
3
+ import streamlit as st
4
+ import pandas as pd
5
+ from llama_index.core.tools.tool_spec.base import BaseToolSpec
6
+
7
+ class ScriptureDescriptionToolSpec(BaseToolSpec):
8
+ '''
9
+ Purpose: Obtains the description or summary about vedas, mandalas, kandas, shuktas, archakah, adhyaya, and other scriptural elements.
10
+ Returns: A dictionary containing the description or basic information about the specified scriptural element.
11
+ Sample query:
12
+ 1. Describe the first kandah, second shukta from Atharvaveda?
13
+ 2. Summarize ShuklaYajurVeda?
14
+ 3. What is the difference between ShuklaYajurVeda and KrishnaYajurVeda?
15
+ '''
16
+ # Define the functions that we export to the LLM
17
+ spec_functions = ["get_description"]
18
+
19
+ with open("Data/scripture_descriptions.csv", 'rb') as f:
20
+ result = chardet.detect(f.read())
21
+
22
+ encoding = result['encoding']
23
+ df = pd.read_csv("Data/scripture_descriptions.csv", encoding=encoding)
24
+
25
+ @st.cache_data
26
+ def get_description(_self, level_0, level_1:int=None, level_2:int=None, level_3:int=None):
27
+ """
28
+ To get the description or basic information about vedas/mandalas/kandas/shukatas/archakah/adhyaya and others.
29
+ """
30
+ try:
31
+ if level_3 is not None:
32
+ # Case with Level-2 specified
33
+ result = _self.df[(_self.df['scripture_name'].str.lower() == level_0.lower())
34
+ & (_self.df['level_1'] == str(level_1))
35
+ & (_self.df['level_2'] == str(level_2)) & (_self.df['level_3'] == str(level_3))]
36
+ elif level_2 is not None:
37
+ # Case with Level-2 specified
38
+ result = _self.df[(_self.df['scripture_name'].str.lower() == level_0.lower())
39
+ & (_self.df['level_1'] == str(level_1)) & (_self.df['level_2'] == str(level_2))]
40
+ elif level_1 is not None:
41
+ # Case with Level-1 specified
42
+ result = _self.df[(_self.df['scripture_name'].str.lower() == level_0.lower())
43
+ & (_self.df['level_1'] == str(level_1))]
44
+ else:
45
+ # Case with only Level-0 specified
46
+ result = _self.df[_self.df['scripture_name'].str.lower() == level_0.lower()]
47
+
48
+ return result.iloc[0].to_dict()
49
+ except IndexError as e:
50
+ return json.dumps({"error": f"Failed to get scripture description. {e}"})
51
+
52
+ class MantraToolSpec(BaseToolSpec):
53
+ '''
54
+ To obtain translations or meaning of vedamantras from RigVeda and AtharvaVeda using the function `get_translation`.
55
+ The mantra details such as vedamantra, padapatha, rishi, chandah, devata, and swarah from the vedas accessible through the function `get_vedamantra_details`.
56
+ The mantra summary like anvaya, adhibautic, ahyatmic, adhidaivic meaning of vedamantra accessible using the function 'get_vedamantra_summary'
57
+ Sample Query:
58
+ 1. What is the vedamantra of the mantra from Rigveda, first mandala, first shukta, and first mantra?
59
+ 2. What is the devata of the vedamantra from Rigveda, first mandala, first shukta, and first mantra?
60
+ 3. What is the meaning of the vedamantra from Rigveda, first mandala, first shukta, and first mantra written by Tulsi Ram?
61
+ 4. What is the (adhibautic) meaning of the vedamantra from RigVeda, first mandala, first shukta, and first mantra?
62
+ '''
63
+ spec_functions = ["get_translation", "get_vedamantra_details", "get_vedamantra_summary"]
64
+
65
+ TRANSLATION_CSV_PATH = 'Data/trans_Rig_Ath_index_v2.csv'
66
+ VEDAMANTRA_CSV_PATH = "Data/veda_content_modified_v3.csv"
67
+
68
+ def __init__(self):
69
+ super().__init__()
70
+ self.df_translation = pd.read_csv(self.TRANSLATION_CSV_PATH, encoding='utf-8')
71
+ self.df_vedamantra = pd.read_csv(self.VEDAMANTRA_CSV_PATH, encoding='utf-8')
72
+
73
+ @st.cache_data
74
+ def get_translation(_self, mantraid=None, scripture_name=None, MahatmaName=None, KandahNumber=None,
75
+ MandalaNumber=None, ArchikahNumber=None, ShuktaNumber=None,
76
+ AnvayaNumber=None, PrapatakNumber=None, MantraNumber=None,
77
+ AnuvakNumber=None, AdhyayaNumber=None):
78
+ """
79
+ Get the translation of mantras from RigVeda and AtharvaVeda.
80
+ Sample Query:
81
+ 1. What is the translation of Tulsi Ram of the vedamantra from Rigveda, first mandala, first shukta, and first mantra?
82
+ 2. What is the translation or adhibautic meaning of the vedamantra from RigVeda, first mandala, first shukta, and first mantra?
83
+ 3. What is the subject of the mantra 1.1.84.1?
84
+ """
85
+ try:
86
+ if mantraid is None:
87
+ scripture_name_lower = scripture_name.lower() if scripture_name is not None else False
88
+ if scripture_name_lower == 'rigveda':
89
+ details = _self.df_translation[
90
+ (_self.df_translation['scripture_name'].str.lower() == scripture_name_lower)
91
+ & (_self.df_translation['MandalaNumber'] == MandalaNumber)
92
+ & (_self.df_translation['ShuktaNumber'] == int(ShuktaNumber))
93
+ & (_self.df_translation['MantraNumber'] == int(MantraNumber))
94
+ ].to_dict(orient='records')
95
+ elif scripture_name_lower == 'atharvaveda':
96
+ details = _self.df_translation[
97
+ (_self.df_translation['scripture_name'].str.lower() == scripture_name_lower)
98
+ & (_self.df_translation['KandahNumber'] == KandahNumber)
99
+ & (_self.df_translation['ShuktaNumber'] == ShuktaNumber)
100
+ & (_self.df_translation['MantraNumber'] == MantraNumber)].to_dict(orient='records')
101
+ elif scripture_name_lower == 'samaveda':
102
+ details = _self.df_translation[
103
+ (_self.df_translation['scripture_name'].str.lower() == scripture_name_lower)
104
+ & (_self.df_translation['ArchikahNumber'] == ArchikahNumber)
105
+ & (_self.df_translation['ShuktaNumber'] == ShuktaNumber)
106
+ & (_self.df_translation['MantraNumber'] == MantraNumber)].to_dict(orient='records')
107
+ elif scripture_name_lower == 'krishnayajurveda':
108
+ details = _self.df_translation[
109
+ (_self.df_translation['scripture_name'].str.lower() == scripture_name_lower)
110
+ & (_self.df_translation['PrapatakNumber'] == PrapatakNumber)
111
+ & (_self.df_translation['AnuvakNumber'] == AnuvakNumber)
112
+ & (_self.df_translation['MantraNumber'] == MantraNumber)].to_dict(orient='records')
113
+ else:
114
+ details = _self.df_translation[
115
+ (_self.df_translation['scripture_name'].str.lower() == scripture_name_lower)
116
+ & (_self.df_translation['AdhyayaNumber'] == AdhyayaNumber)
117
+ & (_self.df_translation['MantraNumber'] == MantraNumber)
118
+ ].to_dict(orient='records')
119
+ else:
120
+ details = _self.df_translation[_self.df_translation['mantra_id'] == mantraid].to_dict(orient='records')
121
+
122
+ if MahatmaName is not None:
123
+ for item in details:
124
+ if item['MahatmaName'] == MahatmaName:
125
+ return item
126
+ else:
127
+ return details
128
+ except Exception as e:
129
+ return json.dumps({"error": f"Failed to get translation. {e}"})
130
+
131
+ @st.cache_data
132
+ def get_vedamantra_details(_self, mantraid=None, scripture_name=None, KandahNumber=None,
133
+ MandalaNumber=None, ArchikahNumber=None, ShuktaNumber=None,
134
+ AnvayaNumber=None, PrapatakNumber=None, MantraNumber=None,
135
+ AnuvakNumber=None, AdhyayaNumber=None):
136
+ """
137
+ To obtain the vedamantra details such as vedamantra, padapata, devata, rishi, swarah, and chandah.
138
+ 1. What is the vedamantra of the mantra from Rigveda, first mandala, first shukta, and first mantra?
139
+ 2. What is the devata of the vedamantra from Rigveda, first mandala, first shukta, and first mantra?
140
+ """
141
+ try:
142
+ if mantraid is None:
143
+ scripture_name_lower = scripture_name.lower() if scripture_name is not None else False
144
+
145
+ if scripture_name_lower == 'rigveda':
146
+ conditions = (_self.df_vedamantra['scripture_name'].str.lower() == scripture_name_lower) & \
147
+ (_self.df_vedamantra['MandalaNumber'] == MandalaNumber) & \
148
+ (_self.df_vedamantra['ShuktaNumber'] == ShuktaNumber) & \
149
+ (_self.df_vedamantra['MantraNumber'] == str(MantraNumber))
150
+ details = _self.df_vedamantra[conditions]['mantra_json'].values
151
+ vedamantra_details = json.loads(details[0])['mantraHeader']['language'][1]['mandala']['shukta']['mantra']
152
+
153
+ elif scripture_name_lower == 'atharvaveda':
154
+ conditions = (_self.df_vedamantra['scripture_name'].str.lower() == scripture_name_lower) & \
155
+ (_self.df_vedamantra['KandahNumber'] == KandahNumber) & \
156
+ (_self.df_vedamantra['ShuktaNumber'] == ShuktaNumber) & \
157
+ (_self.df_vedamantra['MantraNumber'] == str(MantraNumber))
158
+ details = _self.df_vedamantra[conditions]['mantra_json'].values
159
+ vedamantra_details = json.loads(details[0])['mantraHeader']['language'][1]['kandah']['shukta']['mantra']
160
+ elif scripture_name_lower == 'samaveda':
161
+ conditions = (_self.df_vedamantra['scripture_name'].str.lower() == scripture_name_lower) & \
162
+ (_self.df_vedamantra['ArchikahNumber'] == ArchikahNumber) & \
163
+ (_self.df_vedamantra['ShuktaNumber'] == ShuktaNumber) & \
164
+ (_self.df_vedamantra['MantraNumber'] == str(MantraNumber))
165
+ details = _self.df_vedamantra[conditions]['mantra_json'].values
166
+ vedamantra_details = json.loads(details[0])['mantraHeader']['language'][1]['archikah']
167
+ elif scripture_name_lower == 'krishnayajurveda':
168
+ conditions = (_self.df_vedamantra['scripture_name'].str.lower() == scripture_name_lower) & \
169
+ (_self.df_vedamantra['PrapatakNumber'] == PrapatakNumber) & \
170
+ (_self.df_vedamantra['AnuvakNumber'] == AnuvakNumber) & \
171
+ (_self.df_vedamantra['MantraNumber'] == str(MantraNumber))
172
+ details = _self.df_vedamantra[conditions]['mantra_json'].values
173
+ vedamantra_details = json.loads(details[0])['mantraHeader']['language'][1]['kandah']['prapatak']['anuvak']
174
+ else:
175
+ conditions = (_self.df_vedamantra['scripture_name'].str.lower() == scripture_name_lower) & \
176
+ (_self.df_vedamantra['AdhyayaNumber'] == AdhyayaNumber) & \
177
+ (_self.df_vedamantra['MantraNumber'] == str(MantraNumber))
178
+ details = _self.df_vedamantra[conditions]['mantra_json'].values
179
+ vedamantra_details = json.loads(details[0])['mantraHeader']['language'][1]['adhyaya']['mantra']
180
+
181
+ else:
182
+ # Handle case when mantraid is provided
183
+ details = _self.df_vedamantra[_self.df_vedamantra['mantra_number'] == mantraid]['mantra_json'].values
184
+ vedamantra_details = json.loads(details[0])['mantraHeader']['language'][1]
185
+
186
+ return vedamantra_details
187
+ except Exception as e:
188
+ return json.dumps({"error": f"Failed to get vedamantra details. {str(e)}"})
189
+
190
+ @st.cache_data
191
+ def get_vedamantra_summary(_self, mantraid=None, scripture_name=None, KandahNumber=None,
192
+ MandalaNumber=None, ArchikahNumber=None, ShuktaNumber=None,
193
+ AnvayaNumber=None, PrapatakNumber=None, MantraNumber=None,
194
+ AnuvakNumber=None, AdhyayaNumber=None):
195
+ '''
196
+ To obtain the vedamantra summary like anvaya, translation, adhibautic, adhyatmic, adhidaivic meaning of the mantra.
197
+ 1. What is the adhibautic meaning of the mantra from AtharvaVeda, first kandah, first shukta, and first mantra?
198
+ 2. What is the anvaya of the vedamantra from Rigveda, first mandala, first shukta, and first mantra?
199
+ '''
200
+ try:
201
+ if mantraid is None:
202
+ scripture_name_lower = scripture_name.lower() if scripture_name is not None else False
203
+ if scripture_name_lower == 'rigveda':
204
+ details = _self.df_vedamantra[
205
+ (_self.df_vedamantra['scripture_name'].str.lower() == scripture_name_lower)
206
+ & (_self.df_vedamantra['MandalaNumber'] == MandalaNumber)
207
+ & (_self.df_vedamantra['ShuktaNumber'] == ShuktaNumber)
208
+ & (_self.df_vedamantra['MantraNumber'] == str(MantraNumber))
209
+ ]['mantra_json'].values
210
+ elif scripture_name_lower == 'atharvaveda':
211
+ details = _self.df_vedamantra[
212
+ (_self.df_vedamantra['scripture_name'].str.lower() == scripture_name_lower)
213
+ & (_self.df_vedamantra['KandahNumber'] == KandahNumber)
214
+ & (_self.df_vedamantra['ShuktaNumber'] == ShuktaNumber)
215
+ & (_self.df_vedamantra['MantraNumber'] == str(MantraNumber))
216
+ ]['mantra_json'].values
217
+ elif scripture_name_lower == 'samaveda':
218
+ details = _self.df_vedamantra[
219
+ (_self.df_vedamantra['scripture_name'].str.lower() == scripture_name_lower)
220
+ & (_self.df_vedamantra['ArchikahNumber'] == ArchikahNumber)
221
+ & (_self.df_vedamantra['ShuktaNumber'] == ShuktaNumber)
222
+ & (_self.df_vedamantra['MantraNumber'] == str(MantraNumber))
223
+ ]['mantra_json'].values
224
+ elif scripture_name_lower == 'krishnayajurveda':
225
+ details = _self.df_vedamantra[
226
+ (_self.df_vedamantra['scripture_name'].str.lower() == scripture_name_lower)
227
+ & (_self.df_vedamantra['PrapatakNumber'] == PrapatakNumber)
228
+ & (_self.df_vedamantra['AnuvakNumber'] == AnuvakNumber)
229
+ & (_self.df_vedamantra['MantraNumber'] == str(MantraNumber))
230
+ ]['mantra_json'].values
231
+ else:
232
+ details = _self.df_vedamantra[
233
+ (_self.df_vedamantra['scripture_name'].str.lower() == scripture_name_lower)
234
+ & (_self.df_vedamantra['AdhyayaNumber'] == AdhyayaNumber)
235
+ & (_self.df_vedamantra['MantraNumber'] == str(MantraNumber))
236
+ ]['mantra_json'].values
237
+ else:
238
+ details = _self.df_vedamantra[_self.df_vedamantra['mantra_number'] == mantraid]['mantra_json'].values
239
+
240
+ jsonDict = json.loads(details[0])
241
+ mantraSummary = jsonDict['mantraSummary']['language']
242
+ mantraSummary_IAST = jsonDict['mantraSummary']['language'][1]
243
+ vedamantra_summary = {"Roman-IAST summary of vedamantra": mantraSummary_IAST}
244
+ for item in mantraSummary:
245
+ if item['languageName'] == 'English':
246
+ vedamantra_summary.update({"English summary of vedamantra": item})
247
+ return vedamantra_summary
248
+ except Exception as e:
249
+ return json.dumps({"error": f"Failed to get vedamantra summary. {e}"})
src/app.py ADDED
@@ -0,0 +1,149 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ st.set_page_config(
3
+ page_title="SVARUPA AI",
4
+ layout="centered", # or "wide"
5
+ initial_sidebar_state="auto" # or "expanded" or "collapsed"
6
+ )
7
+ from llama_index.core import VectorStoreIndex, StorageContext, Document
8
+ from llama_index.llms.openai import OpenAI
9
+ import os
10
+ import pandas as pd
11
+ from llama_index.core import Settings
12
+ from llama_index.vector_stores.pinecone import PineconeVectorStore
13
+ import pinecone
14
+ from pinecone import Pinecone, PodSpec
15
+ from llama_index.core.query_engine import PandasQueryEngine
16
+ from llama_index.core.agent import ReActAgent
17
+ from llama_index.core.memory import ChatMemoryBuffer
18
+ from sentence_transformers import SentenceTransformer
19
+ from llama_index.embeddings.huggingface import HuggingFaceEmbedding
20
+ #from llama_index.indices.postprocessor import SimilarityPostprocessor
21
+ #from llama_index.postprocessor import SentenceTransformerRerank
22
+ import tiktoken
23
+ from llama_index.core.callbacks import CallbackManager, TokenCountingHandler
24
+ from llama_index.core.tools import QueryEngineTool, ToolMetadata
25
+ from FunctionTools import ScriptureDescriptionToolSpec, MantraToolSpec
26
+
27
+
28
+ #load keys
29
+ openai_api_key = st.secrets["OPENAI_APIKEY_CS"]
30
+ pinecone_api_key = st.secrets["PINECONE_API_KEY_SAM"]
31
+
32
+ #llm
33
+ llm_AI4 = OpenAI(temperature=0, model="gpt-4-1106-preview",api_key=openai_api_key, max_tokens=512)
34
+ token_counter = TokenCountingHandler(
35
+ tokenizer=tiktoken.encoding_for_model("gpt-4-1106-preview").encode
36
+ )
37
+
38
+ # global settings
39
+ Settings.embed_model = HuggingFaceEmbedding(
40
+ model_name="BAAI/bge-large-en-v1.5",
41
+ embed_batch_size=8
42
+ )
43
+ Settings.llm = llm_AI4
44
+ Settings.chunk_size = 512
45
+ Settings.chunk_overlap = 50
46
+ Settings.callback_manager = CallbackManager([token_counter])
47
+ #memory for bot
48
+ memory = ChatMemoryBuffer.from_defaults(token_limit=3900)
49
+
50
+ #load vector database
51
+ pc = Pinecone(api_key=pinecone_api_key)
52
+ pinecone_index = pc.Index("pod-index")
53
+ vector_store_pine = PineconeVectorStore(pinecone_index=pinecone_index)
54
+ storage_context_pine = StorageContext.from_defaults(vector_store=vector_store_pine)
55
+ index_store = VectorStoreIndex.from_vector_store(vector_store_pine,storage_context=storage_context_pine)
56
+ query_engine_vector = index_store.as_query_engine(similarity_top_k=5,vector_store_query_mode ='hybrid',alpha=0.6)
57
+ #pandas Engine
58
+ df_veda_details = pd.read_csv("Data/veda_content_details.csv",encoding='utf-8')
59
+ query_engine_pandas = PandasQueryEngine(df=df_veda_details)
60
+
61
+ # Query Engine Tools
62
+ query_engine_tools = [
63
+ QueryEngineTool(
64
+ query_engine=query_engine_vector,
65
+ metadata=ToolMetadata(
66
+ name="vector_engine",
67
+ description=(
68
+ '''Helpful to get semantic information from the documents. These documents containing comprehensive information about the Vedas.\
69
+ They also covers various aspects, including general details about the Vedas, fundamental terminology associated with Vedic literature, \
70
+ and detailed information about Vedamantras for each Veda. The Vedamantra details encompass essential elements such as padapatha, rishi, chandah,\
71
+ devata, and swarah.This tool is very useful to answer general questions related to vedas.\
72
+ Sample Query:\
73
+ 1. What is the meaning of devata ?\
74
+ 2. What are the different Brahmanas associated with SamaVeda?\
75
+ 3. What is the difference between Shruti and Smriti.
76
+ '''
77
+ ),
78
+ ),
79
+ ),
80
+ QueryEngineTool(
81
+ query_engine=query_engine_pandas,
82
+ metadata=ToolMetadata(
83
+ name="pandas_engine",
84
+ description=(
85
+ '''Helpful to answer the queries related to count from the documents. This document is a .csv file with different columns containing comprehensive information about the Vedas.\
86
+ The column names as follows:\
87
+ 'mantra_id', 'scripture_name', 'KandahNumber', 'PrapatakNumber','AnuvakNumber', 'MantraNumber', 'DevataName', 'RishiName', 'SwarahName', 'ChandaName',\
88
+ 'padapatha', 'vedamantra', 'AdhyayaNumber', 'ArchikahNumber', 'ArchikahName', 'ShuktaNumber', 'keyShukta', 'ParyayaNumber', 'MandalaNumber'
89
+ ''This tool is very useful to answer questions related to vedas on.\
90
+ Sample Query:\
91
+ 1. How many mantras are there in RigVeda whose swarah is gāndhāraḥ?\
92
+ 2. How many different devata present in rigveda?\
93
+ 3. Which Kandah has the maximum number of in KrishnaYajurVeda?
94
+ 4. How many mantras are there in RigVeda?
95
+ '''
96
+ ),
97
+ ),
98
+ )
99
+ ]
100
+
101
+ # tools
102
+ mantra_tools = MantraToolSpec().to_tool_list()
103
+ description_tools = ScriptureDescriptionToolSpec().to_tool_list()
104
+ tools = [*mantra_tools,*description_tools,*query_engine_tools]
105
+
106
+ # context
107
+ context = """
108
+ You are an expert on Vedas and related scriptures.\
109
+ Your role is to respond to questions about vedic scriptures and associated information based on available sources.\
110
+ For every query, you must use either any one of the tool or use available history/context.
111
+ Please provide well-informed answers. Don't use prior knowledge.
112
+ """
113
+
114
+ # Function to create ReActAgent instance (change it based on your initialization logic)
115
+ @st.cache_resource(show_spinner=False) # Set allow_output_mutation to True for mutable objects like instances
116
+ def create_react_agent():
117
+ return ReActAgent.from_tools(tools, llm=llm_AI4, context=context, verbose=True)
118
+
119
+ # Example usage
120
+ react_agent_instance = create_react_agent()
121
+
122
+ # Streamlit Components Initialization
123
+ st.title("Svarupa Bot ")
124
+
125
+ if "messages" not in st.session_state.keys():
126
+ st.session_state.messages = [
127
+ {"role": "assistant", "content": "Hi. I am Svarupa AI Assistant. Ask me a question about Vedas!"}
128
+ ]
129
+
130
+ if "chat_engine" not in st.session_state.keys():
131
+ # Using st.cache_resource for caching the unserializable react_agent
132
+ st.session_state.chat_engine = create_react_agent()
133
+
134
+ if prompt := st.chat_input("Your question"):
135
+ st.session_state.messages.append({"role": "user", "content": prompt})
136
+
137
+ for message in st.session_state.messages:
138
+ with st.chat_message(message["role"]):
139
+ st.write(message["content"])
140
+
141
+ if st.session_state.messages[-1]["role"] != "assistant":
142
+ with st.chat_message("assistant"):
143
+ with st.spinner("Thinking..."):
144
+ # Using the cached chat_engine
145
+ response = st.session_state.chat_engine.chat(prompt)
146
+ st.write(response.response)
147
+ message = {"role": "assistant", "content": response.response}
148
+ st.session_state.messages.append(message)
149
+