img_3d / app.py
sammyview80's picture
Upload 27 files
7306307 verified
import shlex
import subprocess
import tempfile
import time
import numpy as np
import rembg
import spaces
import torch
from PIL import Image
subprocess.run(shlex.split('pip install wheel/torchmcubes-0.1.0-cp310-cp310-linux_x86_64.whl'))
from tsr.system import TSR
from tsr.utils import remove_background, resize_foreground, to_gradio_3d_orientation
from flask import Flask, flash, request
from flask_session import Session
app = Flask(__name__)
app.config["SESSION_PERMANENT"] = False
app.config["SESSION_TYPE"] = "filesystem"
Session(app)
if torch.cuda.is_available():
device = "cuda:0"
else:
device = "cpu"
model = TSR.from_pretrained(
"stabilityai/TripoSR",
config_name="config.yaml",
weight_name="model.ckpt",
)
model.renderer.set_chunk_size(131072)
model.to(device)
rembg_session = rembg.new_session()
def check_input_image(input_image):
if input_image is None:
raise ValueError('Please provide an input image.')
def preprocess(input_image, do_remove_background, foreground_ratio):
def fill_background(image):
image = np.array(image).astype(np.float32) / 255.0
image = image[:, :, :3] * image[:, :, 3:4] + (1 - image[:, :, 3:4]) * 0.5
image = Image.fromarray((image * 255.0).astype(np.uint8))
return image
if do_remove_background:
image = input_image.convert("RGB")
image = remove_background(image, rembg_session)
image = resize_foreground(image, foreground_ratio)
image = fill_background(image)
else:
image = input_image
if image.mode == "RGBA":
image = fill_background(image)
return image
@spaces.GPU
def generate(image, mc_resolution, formats=["obj", "glb"]):
scene_codes = model(image, device=device)
mesh = model.extract_mesh(scene_codes, resolution=mc_resolution)[0]
mesh = to_gradio_3d_orientation(mesh)
mesh_path_glb = tempfile.NamedTemporaryFile(suffix=f".glb", delete=False)
mesh.export(mesh_path_glb.name)
mesh_path_obj = tempfile.NamedTemporaryFile(suffix=f".obj", delete=False)
mesh.apply_scale([-1, 1, 1]) # Otherwise the visualized .obj will be flipped
mesh.export(mesh_path_obj.name)
return mesh_path_obj.name, mesh_path_glb.name
def run_example(image_pil):
preprocessed = preprocess(image_pil, False, 0.9)
mesh_name_obj, mesh_name_glb = generate(preprocessed, 256, ["obj", "glb"])
return preprocessed, mesh_name_obj, mesh_name_glb
@app.route("/", methods=['GET', 'POST'])
def hello():
if request.method == 'POST':
if 'file' not in request.files:
flash('No file part')
return {"status": "Failed", "message": "Please Provide file name(file)."}
file = request.files['file']
image = Image.open(file)
preprocess_image = run_example(image)
print(preprocess_image)
return {"status": "Success", "message": "You can download the 3D model.", "data": preprocess_image}
else:
return {
"status": "Success",
"message":"You can upload an image file to get the 3D model."
}
if __name__ == "__main__":
app.run()
# with gr.Blocks() as demo:
# gr.Markdown(HEADER)
# with gr.Row(variant="panel"):
# with gr.Column():
# with gr.Row():
# input_image = gr.Image(
# label="Input Image",
# image_mode="RGBA",
# sources="upload",
# type="pil",
# elem_id="content_image",
# )
# processed_image = gr.Image(label="Processed Image", interactive=False)
# with gr.Row():
# with gr.Group():
# do_remove_background = gr.Checkbox(
# label="Remove Background", value=True
# )
# foreground_ratio = gr.Slider(
# label="Foreground Ratio",
# minimum=0.5,
# maximum=1.0,
# value=0.85,
# step=0.05,
# )
# mc_resolution = gr.Slider(
# label="Marching Cubes Resolution",
# minimum=32,
# maximum=320,
# value=256,
# step=32
# )
# with gr.Row():
# submit = gr.Button("Generate", elem_id="generate", variant="primary")
# with gr.Column():
# with gr.Tab("OBJ"):
# output_model_obj = gr.Model3D(
# label="Output Model (OBJ Format)",
# interactive=False,
# )
# gr.Markdown("Note: Downloaded object will be flipped in case of .obj export. Export .glb instead or manually flip it before usage.")
# with gr.Tab("GLB"):
# output_model_glb = gr.Model3D(
# label="Output Model (GLB Format)",
# interactive=False,
# )
# gr.Markdown("Note: The model shown here has a darker appearance. Download to get correct results.")
# with gr.Row(variant="panel"):
# gr.Examples(
# examples=[
# os.path.join("examples", img_name) for img_name in sorted(os.listdir("examples"))
# ],
# inputs=[input_image],
# outputs=[processed_image, output_model_obj, output_model_glb],
# cache_examples=True,
# fn=partial(run_example),
# label="Examples",
# examples_per_page=20
# )
# submit.click(fn=check_input_image, inputs=[input_image]).success(
# fn=preprocess,
# inputs=[input_image, do_remove_background, foreground_ratio],
# outputs=[processed_image],
# ).success(
# fn=generate,
# inputs=[processed_image, mc_resolution],
# outputs=[output_model_obj, output_model_glb],
# )
# demo.queue(max_size=10)
# demo.launch()