|
from typing import List, Dict, Tuple
|
|
import requests
|
|
from elasticsearch import Elasticsearch
|
|
import os
|
|
import time
|
|
from dotenv import load_dotenv
|
|
|
|
load_dotenv()
|
|
|
|
class Retriever:
|
|
def __init__(self):
|
|
|
|
self.es = Elasticsearch(
|
|
"https://samlax12-elastic.hf.space",
|
|
basic_auth=("elastic", os.getenv("PASSWORD")),
|
|
verify_certs=False
|
|
)
|
|
self.api_key = os.getenv("API_KEY")
|
|
self.api_base = os.getenv("BASE_URL")
|
|
|
|
def get_embedding(self, text: str) -> List[float]:
|
|
"""调用SiliconFlow的embedding API获取向量"""
|
|
headers = {
|
|
"Authorization": f"Bearer {self.api_key}",
|
|
"Content-Type": "application/json"
|
|
}
|
|
|
|
response = requests.post(
|
|
f"{self.api_base}/embeddings",
|
|
headers=headers,
|
|
json={
|
|
"model": "BAAI/bge-m3",
|
|
"input": text
|
|
}
|
|
)
|
|
|
|
if response.status_code == 200:
|
|
return response.json()["data"][0]["embedding"]
|
|
else:
|
|
raise Exception(f"Error getting embedding: {response.text}")
|
|
|
|
def get_all_indices(self) -> List[str]:
|
|
"""获取所有 RAG 相关的索引"""
|
|
indices = self.es.indices.get_alias().keys()
|
|
return [idx for idx in indices if idx.startswith('rag_')]
|
|
|
|
def retrieve(self, query: str, top_k: int = 10, specific_index: str = None) -> Tuple[List[Dict], str]:
|
|
"""混合检索:结合 BM25 和向量检索,支持指定特定索引"""
|
|
|
|
if specific_index:
|
|
indices = [specific_index] if self.es.indices.exists(index=specific_index) else []
|
|
else:
|
|
indices = self.get_all_indices()
|
|
|
|
if not indices:
|
|
raise Exception("没有找到可用的文档索引!")
|
|
|
|
|
|
query_vector = self.get_embedding(query)
|
|
|
|
|
|
all_results = []
|
|
for index in indices:
|
|
|
|
script_query = {
|
|
"script_score": {
|
|
"query": {
|
|
"match": {
|
|
"content": query
|
|
}
|
|
},
|
|
"script": {
|
|
"source": "cosineSimilarity(params.query_vector, 'vector') + 1.0",
|
|
"params": {"query_vector": query_vector}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
response = self.es.search(
|
|
index=index,
|
|
body={
|
|
"query": script_query,
|
|
"size": top_k
|
|
}
|
|
)
|
|
|
|
|
|
for hit in response['hits']['hits']:
|
|
result = {
|
|
'id': hit['_id'],
|
|
'content': hit['_source']['content'],
|
|
'score': hit['_score'],
|
|
'metadata': hit['_source']['metadata'],
|
|
'index': index
|
|
}
|
|
all_results.append(result)
|
|
|
|
|
|
all_results.sort(key=lambda x: x['score'], reverse=True)
|
|
top_results = all_results[:top_k]
|
|
|
|
|
|
if top_results:
|
|
most_relevant_index = top_results[0]['index']
|
|
else:
|
|
most_relevant_index = indices[0] if indices else ""
|
|
|
|
return top_results, most_relevant_index |