Spaces:
Sleeping
Sleeping
import streamlit as st | |
import pandas as pd | |
import plotly.express as px | |
import plotly.graph_objects as go | |
import statsmodels.api as sm | |
from sklearn.metrics import mean_absolute_error, r2_score,mean_absolute_percentage_error | |
from sklearn.preprocessing import MinMaxScaler | |
import matplotlib.pyplot as plt | |
from statsmodels.stats.outliers_influence import variance_inflation_factor | |
from plotly.subplots import make_subplots | |
st.set_option('deprecation.showPyplotGlobalUse', False) | |
from datetime import datetime | |
import seaborn as sns | |
def plot_actual_vs_predicted(date, y, predicted_values, model, target_column=None, flag=None, repeat_all_years=False, is_panel=False): | |
""" | |
Plots actual vs predicted values with optional flags and aggregation for panel data. | |
Parameters: | |
date (pd.Series): Series of dates for x-axis. | |
y (pd.Series): Actual values. | |
predicted_values (pd.Series): Predicted values from the model. | |
model (object): Trained model object. | |
target_column (str, optional): Name of the target column. | |
flag (tuple, optional): Start and end dates for flagging periods. | |
repeat_all_years (bool, optional): Whether to repeat flags for all years. | |
is_panel (bool, optional): Whether the data is panel data requiring aggregation. | |
Returns: | |
metrics_table (pd.DataFrame): DataFrame containing MAPE, R-squared, and Adjusted R-squared. | |
line_values (list): List of flag values for plotting. | |
fig (go.Figure): Plotly figure object. | |
""" | |
if flag is not None: | |
fig = make_subplots(specs=[[{"secondary_y": True}]]) | |
else: | |
fig = go.Figure() | |
if is_panel: | |
df = pd.DataFrame() | |
df['date'] = date | |
df['Actual'] = y | |
df['Predicted'] = predicted_values | |
df_agg = df.groupby('date').agg({'Actual': 'sum', 'Predicted': 'sum'}).reset_index() | |
df_agg.columns = ['date', 'Actual', 'Predicted'] | |
assert len(df_agg) == pd.Series(date).nunique() | |
fig.add_trace(go.Scatter(x=df_agg['date'], y=df_agg['Actual'], mode='lines', name='Actual', line=dict(color='#08083B'))) | |
fig.add_trace(go.Scatter(x=df_agg['date'], y=df_agg['Predicted'], mode='lines', name='Predicted', line=dict(color='#11B6BD'))) | |
else: | |
fig.add_trace(go.Scatter(x=date, y=y, mode='lines', name='Actual', line=dict(color='#08083B'))) | |
fig.add_trace(go.Scatter(x=date, y=predicted_values, mode='lines', name='Predicted', line=dict(color='#11B6BD'))) | |
line_values = [] | |
if flag: | |
min_date, max_date = flag[0], flag[1] | |
min_week = datetime.strptime(str(min_date), "%Y-%m-%d").strftime("%U") | |
max_week = datetime.strptime(str(max_date), "%Y-%m-%d").strftime("%U") | |
if repeat_all_years: | |
line_values = list(pd.Series(date).map(lambda x: 1 if (pd.Timestamp(x).week >= int(min_week)) & (pd.Timestamp(x).week <= int(max_week)) else 0)) | |
assert len(line_values) == len(date) | |
fig.add_trace(go.Scatter(x=date, y=line_values, mode='lines', name='Flag', line=dict(color='#FF5733')), secondary_y=True) | |
else: | |
line_values = list(pd.Series(date).map(lambda x: 1 if (pd.Timestamp(x) >= pd.Timestamp(min_date)) and (pd.Timestamp(x) <= pd.Timestamp(max_date)) else 0)) | |
fig.add_trace(go.Scatter(x=date, y=line_values, mode='lines', name='Flag', line=dict(color='#FF5733')), secondary_y=True) | |
mape = mean_absolute_percentage_error(y, predicted_values) | |
r2 = r2_score(y, predicted_values) | |
adjr2 = 1 - (1 - r2) * (len(y) - 1) / (len(y) - len(model.params) - 1) | |
metrics_table = pd.DataFrame({ | |
'Metric': ['MAPE', 'R-squared', 'AdjR-squared'], | |
'Value': [mape, r2, adjr2] | |
}) | |
fig.update_layout( | |
xaxis=dict(title='Date'), | |
yaxis=dict(title=target_column), | |
xaxis_tickangle=-30 | |
) | |
fig.add_annotation( | |
text=f"MAPE: {mape * 100:0.1f}%, Adj. R-squared: {adjr2 * 100:.1f}%", | |
xref="paper", | |
yref="paper", | |
x=0.95, | |
y=1.2, | |
showarrow=False, | |
) | |
return metrics_table, line_values, fig | |
def plot_residual_predicted(actual, predicted, df): | |
""" | |
Plots standardized residuals against predicted values. | |
Parameters: | |
actual (pd.Series): Actual values. | |
predicted (pd.Series): Predicted values. | |
df (pd.DataFrame): DataFrame containing the data. | |
Returns: | |
fig (go.Figure): Plotly figure object. | |
""" | |
df_ = df.copy() | |
df_['Residuals'] = actual - pd.Series(predicted) | |
df_['StdResidual'] = (df_['Residuals'] - df_['Residuals'].mean()) / df_['Residuals'].std() | |
fig = px.scatter(df_, x=predicted, y='StdResidual', opacity=0.5, color_discrete_sequence=["#11B6BD"]) | |
fig.add_hline(y=0, line_dash="dash", line_color="darkorange") | |
fig.add_hline(y=2, line_color="red") | |
fig.add_hline(y=-2, line_color="red") | |
fig.update_xaxes(title='Predicted') | |
fig.update_yaxes(title='Standardized Residuals (Actual - Predicted)') | |
fig.update_layout(title='2.3.1 Residuals over Predicted Values', autosize=False, width=600, height=400) | |
return fig | |
def residual_distribution(actual, predicted): | |
""" | |
Plots the distribution of residuals. | |
Parameters: | |
actual (pd.Series): Actual values. | |
predicted (pd.Series): Predicted values. | |
Returns: | |
plt (matplotlib.pyplot): Matplotlib plot object. | |
""" | |
Residuals = actual - pd.Series(predicted) | |
sns.set(style="whitegrid") | |
plt.figure(figsize=(6, 4)) | |
sns.histplot(Residuals, kde=True, color="#11B6BD") | |
plt.title('2.3.3 Distribution of Residuals') | |
plt.xlabel('Residuals') | |
plt.ylabel('Probability Density') | |
return plt | |
def qqplot(actual, predicted): | |
""" | |
Creates a QQ plot of the residuals. | |
Parameters: | |
actual (pd.Series): Actual values. | |
predicted (pd.Series): Predicted values. | |
Returns: | |
fig (go.Figure): Plotly figure object. | |
""" | |
Residuals = actual - pd.Series(predicted) | |
Residuals = pd.Series(Residuals) | |
Resud_std = (Residuals - Residuals.mean()) / Residuals.std() | |
fig = go.Figure() | |
fig.add_trace(go.Scatter(x=sm.ProbPlot(Resud_std).theoretical_quantiles, | |
y=sm.ProbPlot(Resud_std).sample_quantiles, | |
mode='markers', | |
marker=dict(size=5, color="#11B6BD"), | |
name='QQ Plot')) | |
diagonal_line = go.Scatter( | |
x=[-2, 2], | |
y=[-2, 2], | |
mode='lines', | |
line=dict(color='red'), | |
name=' ' | |
) | |
fig.add_trace(diagonal_line) | |
fig.update_layout(title='2.3.2 QQ Plot of Residuals', title_x=0.5, autosize=False, width=600, height=400, | |
xaxis_title='Theoretical Quantiles', yaxis_title='Sample Quantiles') | |
return fig | |