import streamlit as st | |
#from langchain_openai import OpenAI | |
#from langchain.llms import HuggingFaceEndpoint | |
from langchain_community.llms import HuggingFaceEndpoint | |
#When deployed on huggingface spaces, this values has to be passed using Variables & Secrets setting, as shown in the video :) | |
#import os | |
#os.environ["OPENAI_API_KEY"] = "sk-PLfFwPq6y24234234234FJ1Uc234234L8hVowXdt" | |
#Function to return the response | |
def load_answer(question): | |
# "text-davinci-003" model is depreciated, so using the latest one https://platform.openai.com/docs/deprecations | |
#llm = OpenAI(model_name="gpt-3.5-turbo-instruct",temperature=0) | |
llm = HuggingFaceEndpoint(repo_id="mistralai/Mistral-7B-Instruct-v0.2", Temperature=0.9) | |
#Last week langchain has recommended to use invoke function for the below please :) | |
answer=llm.invoke(question) | |
return answer | |
#App UI starts here | |
st.set_page_config(page_title="Sentiment Analysis", page_icon=":robot:") | |
st.header("Sentiment Analysis") | |
#Gets the user input | |
def get_text(): | |
input_text = st.text_input("You:", "Pls Write Your Something.......") | |
if input_text.isalpha(): | |
st.write(text, 'string', ) | |
else: | |
st.write('Please type in a string Only') | |
return input_text | |
user_input=get_text() | |
response = load_answer(user_input) | |
submit = st.button('Generate') | |
#If generate button is clicked | |
if submit: | |
st.subheader("Answer:") | |
st.write(response) | |