QA-MISTRAL-AI / app.py
samim2024's picture
Update app.py
2add24a verified
#DocArrayInMemorySearch is a document index provided by Docarray that stores documents in memory.
#It is a great starting point for small datasets, where you may not want to launch a database server.
# import libraries
import streamlit as st
import requests
from bs4 import BeautifulSoup
#from langchain.indexes import VectorstoreIndexCreator #Logic for creating indexes.
#from langchain.vectorstores import DocArrayInMemorySearch #document index provided by Docarray that stores documents in memory.
from sentence_transformers import SentenceTransformer
from langchain_community.llms import HuggingFaceEndpoint
from langchain_chroma import Chroma
from langchain_community.document_loaders import TextLoader
from langchain_community.embeddings.sentence_transformer import (SentenceTransformerEmbeddings,)
from langchain_text_splitters import CharacterTextSplitter
from langchain.chains import RetrievalQA
#import vertexai
#from langchain.llms import VertexAI
#from langchain.embeddings import VertexAIEmbeddings
#vertexai.init(project=PROJECT, location=LOCATION) #GCP PROJECT ID, LOCATION as region.
#The PaLM 2 for Text (text-bison, text-unicorn) foundation models are optimized for a variety of natural language
#tasks such as sentiment analysis, entity extraction, and content creation. The types of content that the PaLM 2 for
#Text models can create include document summaries, answers to questions, and labels that classify content.
llm = HuggingFaceEndpoint(repo_id="mistralai/Mistral-7B-Instruct-v0.2", Temperature=0.3)
#model = SentenceTransformer("all-MiniLM-L6-v2")
#llm = VertexAI(model_name="text-bison@001",max_output_tokens=256,temperature=0.1,top_p=0.8,top_k=40,verbose=True,)
#embeddings = VertexAIEmbeddings()
#embeddings = model.encode(sentences)
#The below code scrapes all the text data from the webpage link provided by the user and saves it in a text file.
def get_text(url):
# Send a GET request to the URL
response = requests.get(url)
# Create a BeautifulSoup object with the HTML content
soup = BeautifulSoup(response.content, "html.parser")
# Find the specific element or elements containing the text you want to scrape
# Here, we'll find all <p> tags and extract their text
paragraphs = soup.find_all("p")
# Loop through the paragraphs and print their text
with open("text\\temp.txt", "w", encoding='utf-8') as file:
# Loop through the paragraphs and write their text to the file
for paragraph in paragraphs:
file.write(paragraph.get_text() + "\n")
@st.cache_resource
def create_langchain_index(input_text):
print("--indexing---")
get_text(input_text)
loader = TextLoader("text\\temp.txt", encoding='utf-8')
documents = loader.load()
# split it into chunks
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
docs = text_splitter.split_documents(documents)
# create the open-source embedding function
embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2")
# load it into Chroma
db = Chroma.from_documents(docs, embeddings)
persist_directory = "chroma_db"
vectordb = Chroma.from_documents(documents=docs, embedding=embeddings, persist_directory=persist_directory)
db = Chroma(persist_directory=persist_directory, embedding_function=embeddings)
return db
# @st.cache_resource
# def get_basic_page_details(input_text,summary_query,tweet_query,ln_query):
# index = create_langchain_index(input_text)
# summary_response = index.query(summary_query)
# tweet_response = index.query(tweet_query)
# ln_response = index.query(ln_query)
# return summary_response,tweet_response,ln_response
@st.cache_data
def get_response(input_text,query,_db):
print(f"--querying---{query}")
retrieval_chain = RetrievalQA.from_chain_type(llm, chain_type="stuff", retriever=db.as_retriever())
response = retrieval_chain.run(query)
#response = index.query(query,llm=llm)
return response
#The below code is a simple flow to accept the webpage link and process the queries
#using the get_response function created above. Using the cache, the same.
st.title('Webpage Question and Answering ')
input_text=st.text_input("Provide the link to the webpage...")
summary_response = ""
tweet_response = ""
ln_response = ""
# if st.button("Load"):
if input_text:
db = create_langchain_index(input_text)
summary_query ="Write a 100 words summary of the document"
summary_response = get_response(input_text,summary_query,db)
tweet_query ="Write a twitter tweet"
tweet_response = get_response(input_text,tweet_query,db)
ln_query ="Write a linkedin post for the document"
ln_response = get_response(input_text,ln_query,db)
with st.expander('Page Summary'):
st.info(summary_response)
with st.expander('Tweet'):
st.info(tweet_response)
with st.expander('LinkedIn Post'):
st.info(ln_response)
st.session_state.input_text = ''
question=st.text_input("Ask a question from the link you shared...")
if st.button("Ask"):
if question:
db = create_langchain_index(input_text)
response = get_response(input_text,question,db)
st.write(response)
else:
st.warning("Please enter a question.")