Spaces:
Sleeping
Sleeping
#DocArrayInMemorySearch is a document index provided by Docarray that stores documents in memory. | |
#It is a great starting point for small datasets, where you may not want to launch a database server. | |
# import libraries | |
import streamlit as st | |
import requests | |
from bs4 import BeautifulSoup | |
#from langchain.indexes import VectorstoreIndexCreator #Logic for creating indexes. | |
#from langchain.vectorstores import DocArrayInMemorySearch #document index provided by Docarray that stores documents in memory. | |
from sentence_transformers import SentenceTransformer | |
from langchain_community.llms import HuggingFaceEndpoint | |
from langchain_chroma import Chroma | |
from langchain_community.document_loaders import TextLoader | |
from langchain_community.embeddings.sentence_transformer import (SentenceTransformerEmbeddings,) | |
from langchain_text_splitters import CharacterTextSplitter | |
from langchain.chains import RetrievalQA | |
#import vertexai | |
#from langchain.llms import VertexAI | |
#from langchain.embeddings import VertexAIEmbeddings | |
#vertexai.init(project=PROJECT, location=LOCATION) #GCP PROJECT ID, LOCATION as region. | |
#The PaLM 2 for Text (text-bison, text-unicorn) foundation models are optimized for a variety of natural language | |
#tasks such as sentiment analysis, entity extraction, and content creation. The types of content that the PaLM 2 for | |
#Text models can create include document summaries, answers to questions, and labels that classify content. | |
llm = HuggingFaceEndpoint(repo_id="mistralai/Mistral-7B-Instruct-v0.2", Temperature=0.3) | |
#model = SentenceTransformer("all-MiniLM-L6-v2") | |
#llm = VertexAI(model_name="text-bison@001",max_output_tokens=256,temperature=0.1,top_p=0.8,top_k=40,verbose=True,) | |
#embeddings = VertexAIEmbeddings() | |
#embeddings = model.encode(sentences) | |
#The below code scrapes all the text data from the webpage link provided by the user and saves it in a text file. | |
def get_text(url): | |
# Send a GET request to the URL | |
response = requests.get(url) | |
# Create a BeautifulSoup object with the HTML content | |
soup = BeautifulSoup(response.content, "html.parser") | |
# Find the specific element or elements containing the text you want to scrape | |
# Here, we'll find all <p> tags and extract their text | |
paragraphs = soup.find_all("p") | |
# Loop through the paragraphs and print their text | |
with open("text\\temp.txt", "w", encoding='utf-8') as file: | |
# Loop through the paragraphs and write their text to the file | |
for paragraph in paragraphs: | |
file.write(paragraph.get_text() + "\n") | |
def create_langchain_index(input_text): | |
print("--indexing---") | |
get_text(input_text) | |
loader = TextLoader("text\\temp.txt", encoding='utf-8') | |
documents = loader.load() | |
# split it into chunks | |
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0) | |
docs = text_splitter.split_documents(documents) | |
# create the open-source embedding function | |
embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2") | |
# load it into Chroma | |
db = Chroma.from_documents(docs, embeddings) | |
persist_directory = "chroma_db" | |
vectordb = Chroma.from_documents(documents=docs, embedding=embeddings, persist_directory=persist_directory) | |
db = Chroma(persist_directory=persist_directory, embedding_function=embeddings) | |
return db | |
# @st.cache_resource | |
# def get_basic_page_details(input_text,summary_query,tweet_query,ln_query): | |
# index = create_langchain_index(input_text) | |
# summary_response = index.query(summary_query) | |
# tweet_response = index.query(tweet_query) | |
# ln_response = index.query(ln_query) | |
# return summary_response,tweet_response,ln_response | |
def get_response(input_text,query,_db): | |
print(f"--querying---{query}") | |
retrieval_chain = RetrievalQA.from_chain_type(llm, chain_type="stuff", retriever=db.as_retriever()) | |
response = retrieval_chain.run(query) | |
#response = index.query(query,llm=llm) | |
return response | |
#The below code is a simple flow to accept the webpage link and process the queries | |
#using the get_response function created above. Using the cache, the same. | |
st.title('Webpage Question and Answering ') | |
input_text=st.text_input("Provide the link to the webpage...") | |
summary_response = "" | |
tweet_response = "" | |
ln_response = "" | |
# if st.button("Load"): | |
if input_text: | |
db = create_langchain_index(input_text) | |
summary_query ="Write a 100 words summary of the document" | |
summary_response = get_response(input_text,summary_query,db) | |
tweet_query ="Write a twitter tweet" | |
tweet_response = get_response(input_text,tweet_query,db) | |
ln_query ="Write a linkedin post for the document" | |
ln_response = get_response(input_text,ln_query,db) | |
with st.expander('Page Summary'): | |
st.info(summary_response) | |
with st.expander('Tweet'): | |
st.info(tweet_response) | |
with st.expander('LinkedIn Post'): | |
st.info(ln_response) | |
st.session_state.input_text = '' | |
question=st.text_input("Ask a question from the link you shared...") | |
if st.button("Ask"): | |
if question: | |
db = create_langchain_index(input_text) | |
response = get_response(input_text,question,db) | |
st.write(response) | |
else: | |
st.warning("Please enter a question.") | |