fohy24
commited on
Commit
·
2ded624
1
Parent(s):
bfe52e9
update to use model v13_1_e9 for top 30 morphs prediction
Browse files
app.py
CHANGED
@@ -1,43 +1,56 @@
|
|
|
|
1 |
import torch
|
2 |
from torch import nn
|
3 |
from torchvision import models
|
4 |
from torchvision.transforms import v2
|
5 |
-
import os
|
6 |
from huggingface_hub import hf_hub_download
|
7 |
import gradio as gr
|
8 |
|
9 |
-
labels = [
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
num_labels = len(labels)
|
30 |
|
31 |
# If using GPU
|
32 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
33 |
|
34 |
hf_token = os.getenv('HF_token')
|
35 |
-
model_path = hf_hub_download(repo_id="samfhy/morphmarket_model", filename="
|
36 |
checkpoint = torch.load(model_path, map_location=device)
|
37 |
|
38 |
new_layers = nn.Sequential(
|
39 |
-
nn.LazyLinear(
|
40 |
-
nn.BatchNorm1d(
|
41 |
nn.ReLU(),
|
42 |
nn.Dropout(0.5),
|
43 |
nn.LazyLinear(num_labels)
|
@@ -47,7 +60,7 @@ IMAGE_SIZE = 480
|
|
47 |
transform = v2.Compose([
|
48 |
v2.ToImage(),
|
49 |
v2.Resize((IMAGE_SIZE, IMAGE_SIZE)),
|
50 |
-
v2.ToDtype(torch.float32
|
51 |
v2.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
52 |
])
|
53 |
|
|
|
1 |
+
import os
|
2 |
import torch
|
3 |
from torch import nn
|
4 |
from torchvision import models
|
5 |
from torchvision.transforms import v2
|
|
|
6 |
from huggingface_hub import hf_hub_download
|
7 |
import gradio as gr
|
8 |
|
9 |
+
labels = [
|
10 |
+
'Pastel',
|
11 |
+
'Yellow Belly',
|
12 |
+
'Enchi',
|
13 |
+
'Clown',
|
14 |
+
'Leopard',
|
15 |
+
'Piebald',
|
16 |
+
'Orange Dream',
|
17 |
+
'Fire',
|
18 |
+
'Mojave',
|
19 |
+
'Pinstripe',
|
20 |
+
'Banana',
|
21 |
+
'Normal',
|
22 |
+
'Black Pastel',
|
23 |
+
'Lesser',
|
24 |
+
'Spotnose',
|
25 |
+
'Cinnamon',
|
26 |
+
'GHI',
|
27 |
+
'Hypo',
|
28 |
+
'Spider',
|
29 |
+
'Super Pastel',
|
30 |
+
'Desert Ghost',
|
31 |
+
'Black Head',
|
32 |
+
'Vanilla',
|
33 |
+
'Red Stripe',
|
34 |
+
'Asphalt',
|
35 |
+
'Gravel',
|
36 |
+
'Butter',
|
37 |
+
'Calico',
|
38 |
+
'Albino',
|
39 |
+
'Chocolate'
|
40 |
+
]
|
41 |
+
|
42 |
num_labels = len(labels)
|
43 |
|
44 |
# If using GPU
|
45 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
46 |
|
47 |
hf_token = os.getenv('HF_token')
|
48 |
+
model_path = hf_hub_download(repo_id="samfhy/morphmarket_model", filename="model_v13_1_epoch9.pt", token=hf_token)
|
49 |
checkpoint = torch.load(model_path, map_location=device)
|
50 |
|
51 |
new_layers = nn.Sequential(
|
52 |
+
nn.LazyLinear(2048),
|
53 |
+
nn.BatchNorm1d(2048),
|
54 |
nn.ReLU(),
|
55 |
nn.Dropout(0.5),
|
56 |
nn.LazyLinear(num_labels)
|
|
|
60 |
transform = v2.Compose([
|
61 |
v2.ToImage(),
|
62 |
v2.Resize((IMAGE_SIZE, IMAGE_SIZE)),
|
63 |
+
v2.ToDtype(torch.float32),
|
64 |
v2.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
65 |
])
|
66 |
|