Spaces:
Sleeping
Sleeping
import streamlit as st | |
import pandas as pd | |
import numpy as np | |
from sklearn.linear_model import LinearRegression | |
import matplotlib.pyplot as plt | |
# Load the stock data from the CSV file | |
data = pd.read_csv('Google_test_data.csv') | |
# Prepare the data for prediction | |
X = np.arange(len(data)).reshape(-1, 1) | |
y = data['Close'] | |
# Train the linear regression model | |
model = LinearRegression() | |
model.fit(X, y) | |
# Predict the stock prices | |
predictions = model.predict(X) | |
# Plot the actual and predicted stock prices | |
plt.plot(data['Date'], y, label='Actual') | |
plt.plot(data['Date'], predictions, label='Predicted') | |
plt.xlabel('Date') | |
plt.ylabel('Stock Price') | |
plt.title('Google Stock Price Prediction') | |
plt.legend() | |
# Remove the Streamlit default layout | |
st.set_page_config(layout="wide") | |
# Display the graph in Streamlit | |
st.pyplot(plt) | |