Spaces:
Runtime error
Runtime error
samarthagarwal23
commited on
Commit
•
5e68e2f
1
Parent(s):
c010f14
Update app.py
Browse files
app.py
CHANGED
@@ -66,14 +66,14 @@ def cstr(s, color='black'):
|
|
66 |
def cstr_bold(s, color='black'):
|
67 |
return "<text style=color:{}><b>{}</b></text>".format(color, s)
|
68 |
def cstr_break(s, color='black'):
|
69 |
-
return "<text style=color:{}>{}
|
70 |
|
71 |
def print_colored(text, start_idx, end_idx, confidence):
|
72 |
conf_str = 'Confidence: ' + confidence
|
73 |
a = cstr(' '.join([text[:start_idx], \
|
74 |
-
cstr_bold(text[start_idx:end_idx], color='
|
75 |
text[end_idx:], \
|
76 |
-
cstr_break(conf_str, color='
|
77 |
return a
|
78 |
|
79 |
def final_qa_pipeline(file, query):
|
@@ -91,13 +91,18 @@ def final_qa_pipeline(file, query):
|
|
91 |
fnl_rank = qa_ranker(query, [l["docs"] for l in lvl1], top_k_ranker)
|
92 |
#return (fnl_rank[0]["answer"], str(np.round(100*fnl_rank[0]["score"],2))+"%" , fnl_rank[0]['doc'])
|
93 |
#return (print_colored(fnl_rank[0]['doc'], fnl_rank[0]['start'], fnl_rank[0]['end']), str(np.round(100*fnl_rank[0]["score"],2))+"%"
|
94 |
-
|
|
|
|
|
|
|
|
|
|
|
95 |
#for fnl_ in fnl_rank:
|
96 |
# print("\n")
|
97 |
# print_colored(fnl_['doc'], fnl_['start'], fnl_['end'])
|
98 |
# print(colored("Confidence score of ") + colored(str(fnl_['score'])[:4], attrs=['bold']))
|
99 |
else:
|
100 |
-
return ("No match")
|
101 |
|
102 |
examples = [
|
103 |
[os.path.abspath("dbs-annual-report-2020.pdf"), "how much dividend was paid to shareholders ?"],
|
@@ -111,7 +116,7 @@ examples = [
|
|
111 |
iface = gr.Interface(
|
112 |
fn = final_qa_pipeline,
|
113 |
inputs = [gr.inputs.File(label="input pdf file"), gr.inputs.Textbox(label="Question:")],
|
114 |
-
outputs = [gr.outputs.HTML(label="
|
115 |
examples=examples,
|
116 |
title = "Question Answering on company annual reports",
|
117 |
description = "Navigate long annual reports by using Machine learning to answer your questions. \nSimply upload any annual report pdf you are interested in and ask model a question OR load an example from below."
|
|
|
66 |
def cstr_bold(s, color='black'):
|
67 |
return "<text style=color:{}><b>{}</b></text>".format(color, s)
|
68 |
def cstr_break(s, color='black'):
|
69 |
+
return "<text style=color:{}><br>{}</text>".format(color, s)
|
70 |
|
71 |
def print_colored(text, start_idx, end_idx, confidence):
|
72 |
conf_str = 'Confidence: ' + confidence
|
73 |
a = cstr(' '.join([text[:start_idx], \
|
74 |
+
cstr_bold(text[start_idx:end_idx], color='blue'), \
|
75 |
text[end_idx:], \
|
76 |
+
cstr_break(conf_str, color='grey')]), color='black')
|
77 |
return a
|
78 |
|
79 |
def final_qa_pipeline(file, query):
|
|
|
91 |
fnl_rank = qa_ranker(query, [l["docs"] for l in lvl1], top_k_ranker)
|
92 |
#return (fnl_rank[0]["answer"], str(np.round(100*fnl_rank[0]["score"],2))+"%" , fnl_rank[0]['doc'])
|
93 |
#return (print_colored(fnl_rank[0]['doc'], fnl_rank[0]['start'], fnl_rank[0]['end']), str(np.round(100*fnl_rank[0]["score"],2))+"%"
|
94 |
+
top1 = print_colored(fnl_rank[0]['doc'], fnl_rank[0]['start'], fnl_rank[0]['end'], str(np.round(100*fnl_rank[0]["score"],2))+"%")
|
95 |
+
if len(lvl1)>1:
|
96 |
+
top2 = print_colored(fnl_rank[1]['doc'], fnl_rank[1]['start'], fnl_rank[1]['end'], str(np.round(100*fnl_rank[1]["score"],2))+"%")
|
97 |
+
else:
|
98 |
+
top2 = "None"
|
99 |
+
return (top1, top2)
|
100 |
#for fnl_ in fnl_rank:
|
101 |
# print("\n")
|
102 |
# print_colored(fnl_['doc'], fnl_['start'], fnl_['end'])
|
103 |
# print(colored("Confidence score of ") + colored(str(fnl_['score'])[:4], attrs=['bold']))
|
104 |
else:
|
105 |
+
return ("No match","No match")
|
106 |
|
107 |
examples = [
|
108 |
[os.path.abspath("dbs-annual-report-2020.pdf"), "how much dividend was paid to shareholders ?"],
|
|
|
116 |
iface = gr.Interface(
|
117 |
fn = final_qa_pipeline,
|
118 |
inputs = [gr.inputs.File(label="input pdf file"), gr.inputs.Textbox(label="Question:")],
|
119 |
+
outputs = [gr.outputs.HTML(label="Top 1 answer"), gr.outputs.HTML(label="Top 2 answer")],
|
120 |
examples=examples,
|
121 |
title = "Question Answering on company annual reports",
|
122 |
description = "Navigate long annual reports by using Machine learning to answer your questions. \nSimply upload any annual report pdf you are interested in and ask model a question OR load an example from below."
|