Spaces:
Runtime error
Runtime error
import gradio as gr | |
import os | |
os.system("pip install pdfminer.six rank_bm25 transformers") | |
from gradio.mix import Series | |
import re | |
from rank_bm25 import BM25Okapi | |
import string | |
from transformers import pipeline | |
import pdfminer | |
from pdfminer.high_level import extract_text | |
#from termcolor import colored | |
def read_pdf(file): | |
text = extract_text(file) | |
# Split text into smaller docs | |
len_doc = 400 | |
overlap = 50 | |
docs = [] | |
i = 0 | |
while i < len(text): | |
docs.append(text[i:i+len_doc]) | |
i = i + len_doc - overlap | |
return docs | |
# We use BM25 as retriver which will do 1st round of candidate filtering based on word based matching | |
def bm25_tokenizer(text): | |
tokenized_doc = [] | |
for token in text.lower().split(): | |
token = token.strip(string.punctuation) | |
if len(token) > 0 and token not in _stop_words.ENGLISH_STOP_WORDS: | |
tokenized_doc.append(token) | |
return tokenized_doc | |
def retrieval(query, top_k_retriver, docs): | |
bm25_scores = bm25.get_scores(bm25_tokenizer(query)) | |
top_n = np.argsort(bm25_scores)[::-1][:top_k_retriver] | |
bm25_hits = [{'corpus_id': idx, | |
'score': bm25_scores[idx], | |
'docs':docs[idx]} for idx in top_n if bm25_scores[idx] > 0] | |
bm25_hits = sorted(bm25_hits, key=lambda x: x['score'], reverse=True) | |
return bm25_hits | |
qa_model = pipeline("question-answering", | |
model = "huggingface/deepset/roberta-base-squad2") | |
def qa_ranker(query, docs_, top_k_ranker): | |
ans = [] | |
for doc in docs_: | |
answer = qa_model(question = query, | |
context = doc) | |
answer['doc'] = doc | |
ans.append(answer) | |
return sorted(ans, key=lambda x: x['score'], reverse=True)[:top_k_ranker] | |
def final_qa_pipeline(file, query): | |
docs = read_pdf(file) | |
tokenized_corpus = [] | |
for doc in docs: | |
tokenized_corpus.append(bm25_tokenizer(doc)) | |
bm25 = BM25Okapi(tokenized_corpus) | |
top_k_retriver, top_k_ranker = 10,1 | |
lvl1 = retrieval(query, top_k_retriver, docs) | |
if len(lvl1) > 0: | |
fnl_rank = qa_ranker(query, [l["docs"] for l in lvl1], top_k_ranker) | |
return (fnl_rank[0]["answer"], fnl_rank[0]["score"]) | |
#for fnl_ in fnl_rank: | |
# print("\n") | |
# print_colored(fnl_['doc'], fnl_['start'], fnl_['end']) | |
# print(colored("Confidence score of ") + colored(str(fnl_['score'])[:4], attrs=['bold'])) | |
else: | |
return ("No match", 0) | |
iface = gr.Interface( | |
fn = pdf_to_text, | |
inputs = [gr.inputs.File(label="input pdf file"), gr.inputs.Textbox(label="Question:")], | |
outputs = [gr.outputs.HTML(label="Answer"), gr.outputs.HTML(label="Score")] | |
) | |
iface.launch() |