task1_v2 / scripts /alpr /license_plate_recognizer.py
Samariddin Kushmuratov
added
5029f8d
raw
history blame
9.09 kB
import cv2
import glob
import json
import os.path
import traceback
import numpy as np
from PIL import Image
import sys
import os
path = os.path.abspath("../../python")
sys.path.append(path)
import ultimateAlprSdk
class LicensePlateRecognizer:
def __init__(self,
image_types_mapping,
is_save=False,
is_result_show=False,
save_path=""):
"""
LicensePlateRecognizer classini instansiyasini ishga tushirish.
Parameters:
json_config : dict
JSON formatidagi konfiguratsiya sozlamalari.
image_types_mapping : dict
Rasm rejimlarini ularning mos keladigan turlariga solishtirish.
"""
self.image_types_mapping = image_types_mapping
self.image_save_path = save_path
self.is_save = is_save
self.is_result_show = is_result_show
self.result_dict = {}
def load_cv2_image(self, path):
"""
OpenCV (cv2) kutubxonasi yordamida rasmni berilgan joydan oqib olish funksiyasi.
Parameters:
path : str
rasm o'qib olish joyi.
Returns:
image: ndarray (height, width, channels)
Tuple tipidagi rasm va rasm tipi
Raises:
ValueError
Agar rasm yuklanmasa yoki rasmdagi kanallar soni noto'g'ri bo'lsa.
"""
image = cv2.imread(path)
if image is None:
raise ValueError("Failed to load image: %s" % path)
# rasmning yo'nalishini tekshirish.
orientation = 1
try:
pil_image = Image.open(path)
exif_data = pil_image.getexif()
if exif_data is not None:
for tag, value in exif_data.items():
if tag == 0x0112:
orientation = value
break
except Exception as e:
print("An exception occurred: {}".format(e))
traceback.print_exc()
# Agar rasm 1 dan katta orientatsiya qiymatiga ega bo'lsa,
# u mos ravishda aylantiriladi.
if orientation > 1:
rotate_code = cv2.ROTATE_90_CLOCKWISE if orientation == 6 else cv2.ROTATE_90_COUNTERCLOCKWISE
image = cv2.rotate(image, rotate_code)
# Rasmni RGB ga aylantirish.
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
# Rasm turi tasvirdagi kanallar soniga qarab aniqlanadi.
image_mode = None
if image.shape[2] == 3:
image_mode = 'RGB'
elif image.shape[2] == 4:
image_mode = 'RGBA'
elif image.shape[2] == 1:
image_mode = 'L'
else:
raise ValueError("Invalid number of channels in the image")
if image_mode not in self.image_types_mapping:
raise ValueError("Invalid mode: %s" % image_mode)
image_type = self.image_types_mapping[image_mode]
return image, image_type
def visualize_result(self, image):
"""
Rasmga bbox va labellar chizish orqali visualizatsiya qilish.
Parameters:
image : ndarray
Rasm.
Returns:
image: ndarray
bbox va labellar orqali ozgartirilgan rasm.
"""
if "plates" not in self.result_dict:
print("No license plates found in the result.")
return image
plates = self.result_dict["plates"]
# bounding boxes va labellarni rasmga chizish
for plate in plates:
plate_text = plate["text"]
confidence_det = plate["confidences"][1]
warped_box = plate["warpedBox"]
pts = np.array([(warped_box[i], warped_box[i + 1]) for i in range(0, len(warped_box), 2)], dtype=np.int32)
cv2.polylines(image, [pts], True, (0, 255, 0), 2)
cv2.putText(image, f"{plate_text} ({confidence_det:.2f})", tuple(pts[0]), cv2.FONT_HERSHEY_SIMPLEX, 0.8,
(0, 255, 0), 2)
if "car" in plate:
car_box = np.array(plate["car"]["warpedBox"], dtype=np.int32).reshape((-1, 2))
cv2.polylines(image, [car_box], True, (255, 0, 0), 2)
car_confidence = plate["car"]["confidence"]
car_text = f"Car Confidence: {car_confidence:.2f}%"
text_position = (car_box[0][0], car_box[0][1] - 10)
font = cv2.FONT_HERSHEY_SIMPLEX
font_scale = 0.5
font_thickness = 1
cv2.putText(image, car_text, text_position, font, font_scale, (255, 0, 0), font_thickness)
return image
def save_result_image(self, image, image_path):
"""
Rasmni berilgan joyga saqlash
Parameters:
image : ndarray
Rasm.
image_path : str
Rasm saqlash joyi.
"""
filename = os.path.basename(image_path)
result_image_path = os.path.join(self.image_save_path, filename)
cv2.imwrite(result_image_path, image)
print("Result image saved:", result_image_path)
def check_result(self, operation, result):
"""
Operatsiya natijasini tekshirish va natijani korib chiqish funksiyasi.
Parameters:
operation : str
bajarilgan operatsiya tavsifi.
result : Result
Tekshirish uchun Result ob'ekti.
Raises:
AssertionError
Agar operatisiya natijasi muvaffaqiyatsiz chiqsa.
"""
if not result.isOK():
print(TAG + operation + ": failed -> " + result.phrase())
assert False
else:
print(TAG + operation + ": OK -> " + result.json())
result_dict = json.loads(result.json())
if not result_dict:
return None
self.result_dict = result_dict
def process_images(self, image_path):
"""
Ultimate ALPR SDK dan foydalangan holda belgilangan rasm papkasidan
rasmlarni qayta ishlash.
Raises:
OSError
Agar rasm papkasida fayl mavjud bo'lmasa.
"""
image, image_type = self.load_cv2_image(image_path)
height, width, channels = image.shape
results = ultimateAlprSdk.UltAlprSdkEngine_process(
image_type,
image.tobytes(),
width,
height,
0,
1
)
self.check_result("Process", results)
if "plates" in self.result_dict:
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
image = self.visualize_result(image)
image = cv2.resize(image, display_size)
if self.is_result_show:
cv2.imshow("License Plate Recognition", image)
cv2.waitKey(0)
cv2.destroyAllWindows()
# agar save true bolsa rasmni berilgan papkaga saqlash
if self.is_save:
self.save_result_image(image, image_path)
if __name__ == "__main__":
PROJECT_DIR = os.path.abspath(os.path.join(os.path.dirname(__file__), '../..'))
display_size = (1200, 700)
TAG = "[PythonRecognizer] "
JSON_CONFIG = {
"debug_level": "info",
"debug_write_input_image_enabled": False,
"debug_internal_data_path": ".",
"num_threads": -1,
"gpgpu_enabled": True,
"max_latency": -1,
"klass_vcr_gamma": 1.5,
"detect_roi": [0, 0, 0, 0],
"detect_minscore": 0.1,
"car_noplate_detect_min_score": 0.8,
"pyramidal_search_enabled": True,
"pyramidal_search_sensitivity": 0.28,
"pyramidal_search_minscore": 0.3,
"pyramidal_search_min_image_size_inpixels": 800,
"recogn_rectify_enabled": True,
"recogn_minscore": 0.3,
"recogn_score_type": "min",
"assets_folder": os.path.join(PROJECT_DIR, 'assets'),
"charset": "latin"
}
IMAGE_TYPES_MAPPING = {
'RGB': ultimateAlprSdk.ULTALPR_SDK_IMAGE_TYPE_RGB24,
'RGBA': ultimateAlprSdk.ULTALPR_SDK_IMAGE_TYPE_RGBA32,
'L': ultimateAlprSdk.ULTALPR_SDK_IMAGE_TYPE_Y
}
# rasmlar joyi
image_folder = os.path.join(PROJECT_DIR, 'assets', 'images')
# natija rasimlarni saqlash joyi
save_img_path = os.path.join(PROJECT_DIR, 'assets', 'result_imgs')
recognizer = LicensePlateRecognizer(IMAGE_TYPES_MAPPING,
is_save=True,
save_path=save_img_path,
is_result_show=False)
recognizer.check_result("Init",
ultimateAlprSdk.UltAlprSdkEngine_init(
json.dumps(JSON_CONFIG)))
images = glob.glob(os.path.join(image_folder, '*.*'))
for image_path in images:
if not os.path.isfile(image_path):
raise OSError("File doesn't exist: %s" % image_path)
print("rasm manzili")
recognizer.process_images(image_path)
recognizer.check_result("DeInit", ultimateAlprSdk.UltAlprSdkEngine_deInit())