|
import numpy as np |
|
import os |
|
import torch |
|
from visualize.joints2smpl.src import config |
|
import smplx |
|
import h5py |
|
from visualize.joints2smpl.src.smplify import SMPLify3D |
|
from tqdm import tqdm |
|
import utils.rotation_conversions as geometry |
|
import argparse |
|
|
|
|
|
class joints2smpl: |
|
|
|
def __init__(self, num_frames, device_id, cuda=True): |
|
self.device = torch.device("cuda:" + str(device_id) if cuda else "cpu") |
|
|
|
self.batch_size = num_frames |
|
self.num_joints = 22 |
|
self.joint_category = "AMASS" |
|
self.num_smplify_iters = 80 |
|
self.fix_foot = False |
|
print(config.SMPL_MODEL_DIR) |
|
smplmodel = smplx.create(config.SMPL_MODEL_DIR, |
|
model_type="smpl", gender="neutral", ext="pkl", |
|
batch_size=self.batch_size).to(self.device) |
|
|
|
|
|
smpl_mean_file = config.SMPL_MEAN_FILE |
|
|
|
file = h5py.File(smpl_mean_file, 'r') |
|
self.init_mean_pose = torch.from_numpy(file['pose'][:]).unsqueeze(0).repeat(self.batch_size, 1).float().to(self.device) |
|
self.init_mean_shape = torch.from_numpy(file['shape'][:]).unsqueeze(0).repeat(self.batch_size, 1).float().to(self.device) |
|
self.cam_trans_zero = torch.Tensor([0.0, 0.0, 0.0]).unsqueeze(0).to(self.device) |
|
|
|
|
|
|
|
self.smplify = SMPLify3D(smplxmodel=smplmodel, |
|
batch_size=self.batch_size, |
|
joints_category=self.joint_category, |
|
num_iters=self.num_smplify_iters, |
|
device=self.device) |
|
|
|
|
|
def npy2smpl(self, npy_path): |
|
out_path = npy_path.replace('.npy', '_rot.npy') |
|
motions = np.load(npy_path, allow_pickle=True)[None][0] |
|
|
|
n_samples = motions['motion'].shape[0] |
|
all_thetas = [] |
|
for sample_i in tqdm(range(n_samples)): |
|
thetas, _ = self.joint2smpl(motions['motion'][sample_i].transpose(2, 0, 1)) |
|
all_thetas.append(thetas.cpu().numpy()) |
|
motions['motion'] = np.concatenate(all_thetas, axis=0) |
|
print('motions', motions['motion'].shape) |
|
|
|
print(f'Saving [{out_path}]') |
|
np.save(out_path, motions) |
|
exit() |
|
|
|
|
|
|
|
def joint2smpl(self, input_joints, init_params=None): |
|
_smplify = self.smplify |
|
pred_pose = torch.zeros(self.batch_size, 72).to(self.device) |
|
pred_betas = torch.zeros(self.batch_size, 10).to(self.device) |
|
pred_cam_t = torch.zeros(self.batch_size, 3).to(self.device) |
|
keypoints_3d = torch.zeros(self.batch_size, self.num_joints, 3).to(self.device) |
|
|
|
|
|
num_seqs = input_joints.shape[0] |
|
|
|
|
|
|
|
keypoints_3d = torch.Tensor(input_joints).to(self.device).float() |
|
|
|
|
|
if init_params is None: |
|
pred_betas = self.init_mean_shape |
|
pred_pose = self.init_mean_pose |
|
pred_cam_t = self.cam_trans_zero |
|
else: |
|
pred_betas = init_params['betas'] |
|
pred_pose = init_params['pose'] |
|
pred_cam_t = init_params['cam'] |
|
|
|
if self.joint_category == "AMASS": |
|
confidence_input = torch.ones(self.num_joints) |
|
|
|
if self.fix_foot == True: |
|
confidence_input[7] = 1.5 |
|
confidence_input[8] = 1.5 |
|
confidence_input[10] = 1.5 |
|
confidence_input[11] = 1.5 |
|
else: |
|
print("Such category not settle down!") |
|
|
|
new_opt_vertices, new_opt_joints, new_opt_pose, new_opt_betas, \ |
|
new_opt_cam_t, new_opt_joint_loss = _smplify( |
|
pred_pose.detach(), |
|
pred_betas.detach(), |
|
pred_cam_t.detach(), |
|
keypoints_3d, |
|
conf_3d=confidence_input.to(self.device), |
|
|
|
) |
|
|
|
thetas = new_opt_pose.reshape(self.batch_size, 24, 3) |
|
thetas = geometry.matrix_to_rotation_6d(geometry.axis_angle_to_matrix(thetas)) |
|
root_loc = torch.tensor(keypoints_3d[:, 0]) |
|
root_loc = torch.cat([root_loc, torch.zeros_like(root_loc)], dim=-1).unsqueeze(1) |
|
thetas = torch.cat([thetas, root_loc], dim=1).unsqueeze(0).permute(0, 2, 3, 1) |
|
|
|
return thetas.clone().detach(), {'pose': new_opt_joints[0, :24].flatten().clone().detach(), 'betas': new_opt_betas.clone().detach(), 'cam': new_opt_cam_t.clone().detach()} |
|
|
|
|
|
if __name__ == '__main__': |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("--input_path", type=str, required=True, help='Blender file or dir with blender files') |
|
parser.add_argument("--cuda", type=bool, default=True, help='') |
|
parser.add_argument("--device", type=int, default=0, help='') |
|
params = parser.parse_args() |
|
|
|
simplify = joints2smpl(device_id=params.device, cuda=params.cuda) |
|
|
|
if os.path.isfile(params.input_path) and params.input_path.endswith('.npy'): |
|
simplify.npy2smpl(params.input_path) |
|
elif os.path.isdir(params.input_path): |
|
files = [os.path.join(params.input_path, f) for f in os.listdir(params.input_path) if f.endswith('.npy')] |
|
for f in files: |
|
simplify.npy2smpl(f) |