|
import numpy as np |
|
import torch |
|
import torch.optim as optim |
|
import logging |
|
import os |
|
import sys |
|
|
|
def getCi(accLog): |
|
|
|
mean = np.mean(accLog) |
|
std = np.std(accLog) |
|
ci95 = 1.96*std/np.sqrt(len(accLog)) |
|
|
|
return mean, ci95 |
|
|
|
def get_logger(out_dir): |
|
logger = logging.getLogger('Exp') |
|
logger.setLevel(logging.INFO) |
|
formatter = logging.Formatter("%(asctime)s %(levelname)s %(message)s") |
|
|
|
file_path = os.path.join(out_dir, "run.log") |
|
file_hdlr = logging.FileHandler(file_path) |
|
file_hdlr.setFormatter(formatter) |
|
|
|
strm_hdlr = logging.StreamHandler(sys.stdout) |
|
strm_hdlr.setFormatter(formatter) |
|
|
|
logger.addHandler(file_hdlr) |
|
logger.addHandler(strm_hdlr) |
|
return logger |
|
|
|
|
|
def initial_optim(decay_option, lr, weight_decay, net, optimizer) : |
|
|
|
if optimizer == 'adamw' : |
|
optimizer_adam_family = optim.AdamW |
|
elif optimizer == 'adam' : |
|
optimizer_adam_family = optim.Adam |
|
if decay_option == 'all': |
|
|
|
optimizer = optimizer_adam_family(net.parameters(), lr=lr, betas=(0.5, 0.9), weight_decay=weight_decay) |
|
|
|
elif decay_option == 'noVQ': |
|
all_params = set(net.parameters()) |
|
no_decay = set([net.vq_layer]) |
|
|
|
decay = all_params - no_decay |
|
optimizer = optimizer_adam_family([ |
|
{'params': list(no_decay), 'weight_decay': 0}, |
|
{'params': list(decay), 'weight_decay' : weight_decay}], lr=lr) |
|
|
|
return optimizer |
|
|
|
|
|
def get_motion_with_trans(motion, velocity) : |
|
''' |
|
motion : torch.tensor, shape (batch_size, T, 72), with the global translation = 0 |
|
velocity : torch.tensor, shape (batch_size, T, 3), contain the information of velocity = 0 |
|
|
|
''' |
|
trans = torch.cumsum(velocity, dim=1) |
|
trans = trans - trans[:, :1] |
|
trans = trans.repeat((1, 1, 21)) |
|
motion_with_trans = motion + trans |
|
return motion_with_trans |
|
|