|
import torch |
|
import torch.nn as nn |
|
|
|
class ReConsLoss(nn.Module): |
|
def __init__(self, recons_loss, nb_joints): |
|
super(ReConsLoss, self).__init__() |
|
|
|
if recons_loss == 'l1': |
|
self.Loss = torch.nn.L1Loss() |
|
elif recons_loss == 'l2' : |
|
self.Loss = torch.nn.MSELoss() |
|
elif recons_loss == 'l1_smooth' : |
|
self.Loss = torch.nn.SmoothL1Loss() |
|
|
|
|
|
|
|
|
|
|
|
self.nb_joints = nb_joints |
|
self.motion_dim = (nb_joints - 1) * 12 + 4 + 3 + 4 |
|
|
|
def forward(self, motion_pred, motion_gt) : |
|
loss = self.Loss(motion_pred[..., : self.motion_dim], motion_gt[..., :self.motion_dim]) |
|
return loss |
|
|
|
def forward_joint(self, motion_pred, motion_gt) : |
|
loss = self.Loss(motion_pred[..., 4 : (self.nb_joints - 1) * 3 + 4], motion_gt[..., 4 : (self.nb_joints - 1) * 3 + 4]) |
|
return loss |
|
|
|
|