MMM-Demo / utils /eval_trans.py
samadi10's picture
Added necessary files
eeaa83d
raw
history blame
36.3 kB
import os
import clip
import numpy as np
import torch
from scipy import linalg
# import visualization.plot_3d_global as plot_3d
from utils.motion_process import recover_from_ric
from exit.utils import get_model, visualize_2motions, generate_src_mask
from tqdm import tqdm
def tensorborad_add_video_xyz(writer, xyz, nb_iter, tag, nb_vis=4, title_batch=None, outname=None):
xyz = xyz[:1]
bs, seq = xyz.shape[:2]
xyz = xyz.reshape(bs, seq, -1, 3)
plot_xyz = plot_3d.draw_to_batch(xyz.cpu().numpy(),title_batch, outname)
plot_xyz =np.transpose(plot_xyz, (0, 1, 4, 2, 3))
writer.add_video(tag, plot_xyz, nb_iter, fps = 20)
@torch.no_grad()
def evaluation_vqvae(out_dir, val_loader, net, logger, writer, nb_iter, best_fid, best_iter, best_div, best_top1, best_top2, best_top3, best_matching, eval_wrapper, draw = True, save = True, savegif=False, savenpy=False) :
net.eval()
nb_sample = 0
draw_org = []
draw_pred = []
draw_text = []
motion_annotation_list = []
motion_pred_list = []
R_precision_real = 0
R_precision = 0
nb_sample = 0
matching_score_real = 0
matching_score_pred = 0
for batch in val_loader:
word_embeddings, pos_one_hots, caption, sent_len, motion, m_length, token, name = batch
motion = motion.cuda()
et, em = eval_wrapper.get_co_embeddings(word_embeddings, pos_one_hots, sent_len, motion, m_length)
bs, seq = motion.shape[0], motion.shape[1]
num_joints = 21 if motion.shape[-1] == 251 else 22
pred_pose_eval = torch.zeros((bs, seq, motion.shape[-1])).cuda()
for i in range(bs):
pose = val_loader.dataset.inv_transform(motion[i:i+1, :m_length[i], :].detach().cpu().numpy())
# pose_xyz = recover_from_ric(torch.from_numpy(pose).float().cuda(), num_joints)
pred_pose, loss_commit, perplexity = net(motion[i:i+1, :m_length[i]])
# pred_denorm = val_loader.dataset.inv_transform(pred_pose.detach().cpu().numpy())
# pred_xyz = recover_from_ric(torch.from_numpy(pred_denorm).float().cuda(), num_joints)
# if savenpy:
# np.save(os.path.join(out_dir, name[i]+'_gt.npy'), pose_xyz[:, :m_length[i]].cpu().numpy())
# np.save(os.path.join(out_dir, name[i]+'_pred.npy'), pred_xyz.detach().cpu().numpy())
pred_pose_eval[i:i+1,:m_length[i],:] = pred_pose
# if i < min(4, bs):
# draw_org.append(pose_xyz)
# draw_pred.append(pred_xyz)
# draw_text.append(caption[i])
et_pred, em_pred = eval_wrapper.get_co_embeddings(word_embeddings, pos_one_hots, sent_len, pred_pose_eval, m_length)
motion_pred_list.append(em_pred)
motion_annotation_list.append(em)
temp_R, temp_match = calculate_R_precision(et.cpu().numpy(), em.cpu().numpy(), top_k=3, sum_all=True)
R_precision_real += temp_R
matching_score_real += temp_match
temp_R, temp_match = calculate_R_precision(et_pred.cpu().numpy(), em_pred.cpu().numpy(), top_k=3, sum_all=True)
R_precision += temp_R
matching_score_pred += temp_match
nb_sample += bs
motion_annotation_np = torch.cat(motion_annotation_list, dim=0).cpu().numpy()
motion_pred_np = torch.cat(motion_pred_list, dim=0).cpu().numpy()
gt_mu, gt_cov = calculate_activation_statistics(motion_annotation_np)
mu, cov= calculate_activation_statistics(motion_pred_np)
diversity_real = calculate_diversity(motion_annotation_np, 300 if nb_sample > 300 else 100)
diversity = calculate_diversity(motion_pred_np, 300 if nb_sample > 300 else 100)
R_precision_real = R_precision_real / nb_sample
R_precision = R_precision / nb_sample
matching_score_real = matching_score_real / nb_sample
matching_score_pred = matching_score_pred / nb_sample
fid = calculate_frechet_distance(gt_mu, gt_cov, mu, cov)
msg = f"--> \t Eva. Iter {nb_iter} :, FID. {fid:.4f}, Diversity Real. {diversity_real:.4f}, Diversity. {diversity:.4f}, R_precision_real. {R_precision_real}, R_precision. {R_precision}, matching_score_real. {matching_score_real}, matching_score_pred. {matching_score_pred}"
logger.info(msg)
if draw:
writer.add_scalar('./Test/FID', fid, nb_iter)
writer.add_scalar('./Test/Diversity', diversity, nb_iter)
writer.add_scalar('./Test/top1', R_precision[0], nb_iter)
writer.add_scalar('./Test/top2', R_precision[1], nb_iter)
writer.add_scalar('./Test/top3', R_precision[2], nb_iter)
writer.add_scalar('./Test/matching_score', matching_score_pred, nb_iter)
# if nb_iter % 5000 == 0 :
# for ii in range(4):
# tensorborad_add_video_xyz(writer, draw_org[ii], nb_iter, tag='./Vis/org_eval'+str(ii), nb_vis=1, title_batch=[draw_text[ii]], outname=[os.path.join(out_dir, 'gt'+str(ii)+'.gif')] if savegif else None)
# if nb_iter % 5000 == 0 :
# for ii in range(4):
# tensorborad_add_video_xyz(writer, draw_pred[ii], nb_iter, tag='./Vis/pred_eval'+str(ii), nb_vis=1, title_batch=[draw_text[ii]], outname=[os.path.join(out_dir, 'pred'+str(ii)+'.gif')] if savegif else None)
if fid < best_fid :
msg = f"--> --> \t FID Improved from {best_fid:.5f} to {fid:.5f} !!!"
logger.info(msg)
best_fid, best_iter = fid, nb_iter
# if save:
# torch.save({'net' : net.state_dict()}, os.path.join(out_dir, 'net_best_fid.pth'))
if abs(diversity_real - diversity) < abs(diversity_real - best_div) :
msg = f"--> --> \t Diversity Improved from {best_div:.5f} to {diversity:.5f} !!!"
logger.info(msg)
best_div = diversity
# if save:
# torch.save({'net' : net.state_dict()}, os.path.join(out_dir, 'net_best_div.pth'))
if R_precision[0] > best_top1 :
msg = f"--> --> \t Top1 Improved from {best_top1:.4f} to {R_precision[0]:.4f} !!!"
logger.info(msg)
best_top1 = R_precision[0]
# if save:
# torch.save({'net' : net.state_dict()}, os.path.join(out_dir, 'net_best_top1.pth'))
if R_precision[1] > best_top2 :
msg = f"--> --> \t Top2 Improved from {best_top2:.4f} to {R_precision[1]:.4f} !!!"
logger.info(msg)
best_top2 = R_precision[1]
if R_precision[2] > best_top3 :
msg = f"--> --> \t Top3 Improved from {best_top3:.4f} to {R_precision[2]:.4f} !!!"
logger.info(msg)
best_top3 = R_precision[2]
if matching_score_pred < best_matching :
msg = f"--> --> \t matching_score Improved from {best_matching:.5f} to {matching_score_pred:.5f} !!!"
logger.info(msg)
best_matching = matching_score_pred
# if save:
# torch.save({'net' : net.state_dict()}, os.path.join(out_dir, 'net_best_matching.pth'))
if save:
torch.save({'net' : net.state_dict()}, os.path.join(out_dir, 'net_last.pth'))
net.train()
return best_fid, best_iter, best_div, best_top1, best_top2, best_top3, best_matching, writer, logger
@torch.no_grad()
def evaluation_transformer(out_dir, val_loader, net, trans, logger, writer, nb_iter, best_fid, best_iter, best_div, best_top1, best_top2, best_top3, best_matching, clip_model, eval_wrapper, dataname='t2m', draw = True, save = True, savegif=False, num_repeat=1, rand_pos=False, CFG=-1) :
if num_repeat < 0:
is_avg_all = True
num_repeat = -num_repeat
else:
is_avg_all = False
trans.eval()
nb_sample = 0
draw_org = []
draw_pred = []
draw_text = []
draw_text_pred = []
motion_annotation_list = []
motion_pred_list = []
motion_multimodality = []
R_precision_real = 0
R_precision = 0
matching_score_real = 0
matching_score_pred = 0
nb_sample = 0
blank_id = get_model(trans).num_vq
for batch in tqdm(val_loader):
word_embeddings, pos_one_hots, clip_text, sent_len, pose, m_length, token, name = batch
bs, seq = pose.shape[:2]
num_joints = 21 if pose.shape[-1] == 251 else 22
text = clip.tokenize(clip_text, truncate=True).cuda()
feat_clip_text, word_emb = clip_model(text)
motion_multimodality_batch = []
m_tokens_len = torch.ceil((m_length)/4)
pred_len = m_length.cuda()
pred_tok_len = m_tokens_len
for i in range(num_repeat):
pred_pose_eval = torch.zeros((bs, seq, pose.shape[-1])).cuda()
# pred_len = torch.ones(bs).long()
index_motion = trans(feat_clip_text, word_emb, type="sample", m_length=pred_len, rand_pos=rand_pos, CFG=CFG)
# [INFO] 1. this get the last index of blank_id
# pred_length = (index_motion == blank_id).int().argmax(1).float()
# [INFO] 2. this get the first index of blank_id
pred_length = (index_motion >= blank_id).int()
pred_length = torch.topk(pred_length, k=1, dim=1).indices.squeeze().float()
# pred_length[pred_length==0] = index_motion.shape[1] # if blank_id in the first frame, set length to max
# [INFO] need to run single sample at a time b/c it's conv
for k in range(bs):
######### [INFO] Eval only the predicted length
# if pred_length[k] == 0:
# pred_len[k] = seq
# continue
# pred_pose = net(index_motion[k:k+1, :int(pred_length[k].item())], type='decode')
# cur_len = pred_pose.shape[1]
# pred_len[k] = min(cur_len, seq)
# pred_pose_eval[k:k+1, :cur_len] = pred_pose[:, :seq]
# et_pred, em_pred = eval_wrapper.get_co_embeddings(word_embeddings, pos_one_hots, sent_len, pred_pose_eval, pred_len)
######################################################
######### [INFO] Eval by m_length
pred_pose = net(index_motion[k:k+1, :int(pred_tok_len[k].item())], type='decode')
pred_pose_eval[k:k+1, :int(pred_len[k].item())] = pred_pose
et_pred, em_pred = eval_wrapper.get_co_embeddings(word_embeddings, pos_one_hots, sent_len, pred_pose_eval, m_length)
######################################################
motion_multimodality_batch.append(em_pred.reshape(bs, 1, -1))
if i == 0 or is_avg_all:
pose = pose.cuda().float()
et, em = eval_wrapper.get_co_embeddings(word_embeddings, pos_one_hots, sent_len, pose, m_length)
motion_annotation_list.append(em)
motion_pred_list.append(em_pred)
# if draw:
# pose = val_loader.dataset.inv_transform(pose.detach().cpu().numpy())
# pose_xyz = recover_from_ric(torch.from_numpy(pose).float().cuda(), num_joints)
# for j in range(min(4, bs)):
# draw_org.append(pose_xyz[j][:m_length[j]].unsqueeze(0))
# draw_text.append(clip_text[j])
temp_R, temp_match = calculate_R_precision(et.cpu().numpy(), em.cpu().numpy(), top_k=3, sum_all=True)
R_precision_real += temp_R
matching_score_real += temp_match
temp_R, temp_match = calculate_R_precision(et_pred.cpu().numpy(), em_pred.cpu().numpy(), top_k=3, sum_all=True)
R_precision += temp_R
matching_score_pred += temp_match
nb_sample += bs
motion_multimodality.append(torch.cat(motion_multimodality_batch, dim=1))
motion_annotation_np = torch.cat(motion_annotation_list, dim=0).cpu().numpy()
motion_pred_np = torch.cat(motion_pred_list, dim=0).cpu().numpy()
gt_mu, gt_cov = calculate_activation_statistics(motion_annotation_np)
mu, cov= calculate_activation_statistics(motion_pred_np)
diversity_real = calculate_diversity(motion_annotation_np, 300 if nb_sample > 300 else 100)
diversity = calculate_diversity(motion_pred_np, 300 if nb_sample > 300 else 100)
R_precision_real = R_precision_real / nb_sample
R_precision = R_precision / nb_sample
matching_score_real = matching_score_real / nb_sample
matching_score_pred = matching_score_pred / nb_sample
multimodality = 0
motion_multimodality = torch.cat(motion_multimodality, dim=0).cpu().numpy()
if num_repeat > 1:
multimodality = calculate_multimodality(motion_multimodality, 10)
fid = calculate_frechet_distance(gt_mu, gt_cov, mu, cov)
msg = f"--> \t Eva. Iter {nb_iter} :, \n\
FID. {fid:.4f} , \n\
Diversity Real. {diversity_real:.4f}, \n\
Diversity. {diversity:.4f}, \n\
R_precision_real. {R_precision_real}, \n\
R_precision. {R_precision}, \n\
matching_score_real. {matching_score_real}, \n\
matching_score_pred. {matching_score_pred}, \n\
multimodality. {multimodality:.4f}"
logger.info(msg)
if draw:
writer.add_scalar('./Test/FID', fid, nb_iter)
writer.add_scalar('./Test/Diversity', diversity, nb_iter)
writer.add_scalar('./Test/top1', R_precision[0], nb_iter)
writer.add_scalar('./Test/top2', R_precision[1], nb_iter)
writer.add_scalar('./Test/top3', R_precision[2], nb_iter)
writer.add_scalar('./Test/matching_score', matching_score_pred, nb_iter)
writer.add_scalar('./Test/multimodality', multimodality, nb_iter)
# if nb_iter % 10000 == 0 :
# for ii in range(4):
# tensorborad_add_video_xyz(writer, draw_org[ii], nb_iter, tag='./Vis/org_eval'+str(ii), nb_vis=1, title_batch=[draw_text[ii]], outname=[os.path.join(out_dir, 'gt'+str(ii)+'.gif')] if savegif else None)
# if nb_iter % 10000 == 0 :
# for ii in range(4):
# tensorborad_add_video_xyz(writer, draw_pred[ii], nb_iter, tag='./Vis/pred_eval'+str(ii), nb_vis=1, title_batch=[draw_text_pred[ii]], outname=[os.path.join(out_dir, 'pred'+str(ii)+'.gif')] if savegif else None)
if fid < best_fid :
msg = f"--> --> \t FID Improved from {best_fid:.5f} to {fid:.5f} !!!"
logger.info(msg)
best_fid, best_iter = fid, nb_iter
# if save:
# torch.save({'trans' : get_model(trans).state_dict()}, os.path.join(out_dir, 'net_best_fid.pth'))
if matching_score_pred < best_matching :
msg = f"--> --> \t matching_score Improved from {best_matching:.5f} to {matching_score_pred:.5f} !!!"
logger.info(msg)
best_matching = matching_score_pred
if abs(diversity_real - diversity) < abs(diversity_real - best_div) :
msg = f"--> --> \t Diversity Improved from {best_div:.5f} to {diversity:.5f} !!!"
logger.info(msg)
best_div = diversity
if R_precision[0] > best_top1 :
msg = f"--> --> \t Top1 Improved from {best_top1:.4f} to {R_precision[0]:.4f} !!!"
logger.info(msg)
best_top1 = R_precision[0]
if R_precision[1] > best_top2 :
msg = f"--> --> \t Top2 Improved from {best_top2:.4f} to {R_precision[1]:.4f} !!!"
logger.info(msg)
best_top2 = R_precision[1]
if R_precision[2] > best_top3 :
msg = f"--> --> \t Top3 Improved from {best_top3:.4f} to {R_precision[2]:.4f} !!!"
logger.info(msg)
best_top3 = R_precision[2]
if save:
torch.save({'trans' : get_model(trans).state_dict()}, os.path.join(out_dir, 'net_last.pth'))
trans.train()
return pred_pose_eval, pose, m_length, clip_text, best_fid, best_iter, best_div, best_top1, best_top2, best_top3, best_matching, multimodality, writer, logger
def evaluation_transformer_uplow(out_dir, val_loader, net, trans, logger, writer, nb_iter, best_fid, best_iter, best_div, best_top1, best_top2, best_top3, best_matching, clip_model, eval_wrapper, dataname, draw = True, save = True, savegif=False, num_repeat=1, rand_pos=False, CFG=-1) :
from utils.humanml_utils import HML_UPPER_BODY_MASK, HML_LOWER_BODY_MASK
trans.eval()
nb_sample = 0
draw_org = []
draw_pred = []
draw_text = []
draw_text_pred = []
motion_annotation_list = []
motion_pred_list = []
motion_multimodality = []
R_precision_real = 0
R_precision = 0
matching_score_real = 0
matching_score_pred = 0
nb_sample = 0
blank_id = get_model(trans).num_vq
for batch in tqdm(val_loader):
word_embeddings, pos_one_hots, clip_text, sent_len, pose, m_length, token, name = batch
pose = pose.cuda().float()
pose_lower = pose[..., HML_LOWER_BODY_MASK]
bs, seq = pose.shape[:2]
num_joints = 21 if pose.shape[-1] == 251 else 22
text = clip.tokenize(clip_text, truncate=True).cuda()
feat_clip_text, word_emb = clip_model(text)
motion_multimodality_batch = []
m_tokens_len = torch.ceil((m_length)/4)
pred_len = m_length.cuda()
pred_tok_len = m_tokens_len
max_motion_length = int(seq/4) + 1
mot_end_idx = get_model(net).vqvae.num_code
mot_pad_idx = get_model(net).vqvae.num_code + 1
target_lower = []
for k in range(bs):
target = net(pose[k:k+1, :m_length[k]], type='encode')
if m_tokens_len[k]+1 < max_motion_length:
target = torch.cat([target,
torch.ones((1, 1, 2), dtype=int, device=target.device) * mot_end_idx,
torch.ones((1, max_motion_length-1-m_tokens_len[k].int().item(), 2), dtype=int, device=target.device) * mot_pad_idx], axis=1)
else:
target = torch.cat([target,
torch.ones((1, 1, 2), dtype=int, device=target.device) * mot_end_idx], axis=1)
target_lower.append(target[..., 1])
target_lower = torch.cat(target_lower, axis=0)
for i in range(num_repeat):
pred_pose_eval = torch.zeros((bs, seq, pose.shape[-1])).cuda()
# pred_len = torch.ones(bs).long()
index_motion = trans(feat_clip_text, target_lower, word_emb, type="sample", m_length=pred_len, rand_pos=rand_pos, CFG=CFG)
# [INFO] 1. this get the last index of blank_id
# pred_length = (index_motion == blank_id).int().argmax(1).float()
# [INFO] 2. this get the first index of blank_id
pred_length = (index_motion >= blank_id).int()
pred_length = torch.topk(pred_length, k=1, dim=1).indices.squeeze().float()
# pred_length[pred_length==0] = index_motion.shape[1] # if blank_id in the first frame, set length to max
# [INFO] need to run single sample at a time b/c it's conv
for k in range(bs):
######### [INFO] Eval only the predicted length
# if pred_length[k] == 0:
# pred_len[k] = seq
# continue
# pred_pose = net(index_motion[k:k+1, :int(pred_length[k].item())], type='decode')
# cur_len = pred_pose.shape[1]
# pred_len[k] = min(cur_len, seq)
# pred_pose_eval[k:k+1, :cur_len] = pred_pose[:, :seq]
# et_pred, em_pred = eval_wrapper.get_co_embeddings(word_embeddings, pos_one_hots, sent_len, pred_pose_eval, pred_len)
######################################################
######### [INFO] Eval by m_length
all_tokens = torch.cat([
index_motion[k:k+1, :int(pred_tok_len[k].item()), None],
target_lower[k:k+1, :int(pred_tok_len[k].item()), None]
], axis=-1)
pred_pose = net(all_tokens, type='decode')
pred_pose_eval[k:k+1, :int(pred_len[k].item())] = pred_pose
pred_pose_eval[..., HML_LOWER_BODY_MASK] = pose_lower
et_pred, em_pred = eval_wrapper.get_co_embeddings(word_embeddings, pos_one_hots, sent_len, pred_pose_eval, m_length)
######################################################
motion_multimodality_batch.append(em_pred.reshape(bs, 1, -1))
if i == 0:
et, em = eval_wrapper.get_co_embeddings(word_embeddings, pos_one_hots, sent_len, pose, m_length)
motion_annotation_list.append(em)
motion_pred_list.append(em_pred)
# if draw:
# pose = val_loader.dataset.inv_transform(pose.detach().cpu().numpy())
# pose_xyz = recover_from_ric(torch.from_numpy(pose).float().cuda(), num_joints)
# for j in range(min(4, bs)):
# draw_org.append(pose_xyz[j][:m_length[j]].unsqueeze(0))
# draw_text.append(clip_text[j])
temp_R, temp_match = calculate_R_precision(et.cpu().numpy(), em.cpu().numpy(), top_k=3, sum_all=True)
R_precision_real += temp_R
matching_score_real += temp_match
temp_R, temp_match = calculate_R_precision(et_pred.cpu().numpy(), em_pred.cpu().numpy(), top_k=3, sum_all=True)
R_precision += temp_R
matching_score_pred += temp_match
nb_sample += bs
motion_multimodality.append(torch.cat(motion_multimodality_batch, dim=1))
motion_annotation_np = torch.cat(motion_annotation_list, dim=0).cpu().numpy()
motion_pred_np = torch.cat(motion_pred_list, dim=0).cpu().numpy()
gt_mu, gt_cov = calculate_activation_statistics(motion_annotation_np)
mu, cov= calculate_activation_statistics(motion_pred_np)
diversity_real = calculate_diversity(motion_annotation_np, 300 if nb_sample > 300 else 100)
diversity = calculate_diversity(motion_pred_np, 300 if nb_sample > 300 else 100)
R_precision_real = R_precision_real / nb_sample
R_precision = R_precision / nb_sample
matching_score_real = matching_score_real / nb_sample
matching_score_pred = matching_score_pred / nb_sample
multimodality = 0
motion_multimodality = torch.cat(motion_multimodality, dim=0).cpu().numpy()
if num_repeat > 1:
multimodality = calculate_multimodality(motion_multimodality, 10)
fid = calculate_frechet_distance(gt_mu, gt_cov, mu, cov)
msg = f"--> \t Eva. Iter {nb_iter} :, \n\
FID. {fid:.4f} , \n\
Diversity Real. {diversity_real:.4f}, \n\
Diversity. {diversity:.4f}, \n\
R_precision_real. {R_precision_real}, \n\
R_precision. {R_precision}, \n\
matching_score_real. {matching_score_real}, \n\
matching_score_pred. {matching_score_pred}, \n\
multimodality. {multimodality:.4f}"
logger.info(msg)
if draw:
writer.add_scalar('./Test/FID', fid, nb_iter)
writer.add_scalar('./Test/Diversity', diversity, nb_iter)
writer.add_scalar('./Test/top1', R_precision[0], nb_iter)
writer.add_scalar('./Test/top2', R_precision[1], nb_iter)
writer.add_scalar('./Test/top3', R_precision[2], nb_iter)
writer.add_scalar('./Test/matching_score', matching_score_pred, nb_iter)
writer.add_scalar('./Test/multimodality', multimodality, nb_iter)
# if nb_iter % 10000 == 0 :
# for ii in range(4):
# tensorborad_add_video_xyz(writer, draw_org[ii], nb_iter, tag='./Vis/org_eval'+str(ii), nb_vis=1, title_batch=[draw_text[ii]], outname=[os.path.join(out_dir, 'gt'+str(ii)+'.gif')] if savegif else None)
# if nb_iter % 10000 == 0 :
# for ii in range(4):
# tensorborad_add_video_xyz(writer, draw_pred[ii], nb_iter, tag='./Vis/pred_eval'+str(ii), nb_vis=1, title_batch=[draw_text_pred[ii]], outname=[os.path.join(out_dir, 'pred'+str(ii)+'.gif')] if savegif else None)
if fid < best_fid :
msg = f"--> --> \t FID Improved from {best_fid:.5f} to {fid:.5f} !!!"
logger.info(msg)
best_fid, best_iter = fid, nb_iter
# if save:
# torch.save({'trans' : get_model(trans).state_dict()}, os.path.join(out_dir, 'net_best_fid.pth'))
if matching_score_pred < best_matching :
msg = f"--> --> \t matching_score Improved from {best_matching:.5f} to {matching_score_pred:.5f} !!!"
logger.info(msg)
best_matching = matching_score_pred
if abs(diversity_real - diversity) < abs(diversity_real - best_div) :
msg = f"--> --> \t Diversity Improved from {best_div:.5f} to {diversity:.5f} !!!"
logger.info(msg)
best_div = diversity
if R_precision[0] > best_top1 :
msg = f"--> --> \t Top1 Improved from {best_top1:.4f} to {R_precision[0]:.4f} !!!"
logger.info(msg)
best_top1 = R_precision[0]
if R_precision[1] > best_top2 :
msg = f"--> --> \t Top2 Improved from {best_top2:.4f} to {R_precision[1]:.4f} !!!"
logger.info(msg)
best_top2 = R_precision[1]
if R_precision[2] > best_top3 :
msg = f"--> --> \t Top3 Improved from {best_top3:.4f} to {R_precision[2]:.4f} !!!"
logger.info(msg)
best_top3 = R_precision[2]
if save:
torch.save({'trans' : get_model(trans).state_dict()}, os.path.join(out_dir, 'net_last.pth'))
trans.train()
return pred_pose_eval, pose, m_length, clip_text, best_fid, best_iter, best_div, best_top1, best_top2, best_top3, best_matching, multimodality, writer, logger
@torch.no_grad()
def evaluation_transformer_test(out_dir, val_loader, net, trans, logger, writer, nb_iter, best_fid, best_iter, best_div, best_top1, best_top2, best_top3, best_matching, best_multi, clip_model, eval_wrapper, draw = True, save = True, savegif=False, savenpy=False) :
trans.eval()
nb_sample = 0
draw_org = []
draw_pred = []
draw_text = []
draw_text_pred = []
draw_name = []
motion_annotation_list = []
motion_pred_list = []
motion_multimodality = []
R_precision_real = 0
R_precision = 0
matching_score_real = 0
matching_score_pred = 0
nb_sample = 0
for batch in val_loader:
word_embeddings, pos_one_hots, clip_text, sent_len, pose, m_length, token, name = batch
bs, seq = pose.shape[:2]
num_joints = 21 if pose.shape[-1] == 251 else 22
text = clip.tokenize(clip_text, truncate=True).cuda()
feat_clip_text = clip_model.encode_text(text).float()
motion_multimodality_batch = []
for i in range(30):
pred_pose_eval = torch.zeros((bs, seq, pose.shape[-1])).cuda()
pred_len = torch.ones(bs).long()
for k in range(bs):
try:
index_motion = trans.sample(feat_clip_text[k:k+1], True)
except:
index_motion = torch.ones(1,1).cuda().long()
pred_pose = net.forward_decoder(index_motion)
cur_len = pred_pose.shape[1]
pred_len[k] = min(cur_len, seq)
pred_pose_eval[k:k+1, :cur_len] = pred_pose[:, :seq]
if i == 0 and (draw or savenpy):
pred_denorm = val_loader.dataset.inv_transform(pred_pose.detach().cpu().numpy())
pred_xyz = recover_from_ric(torch.from_numpy(pred_denorm).float().cuda(), num_joints)
if savenpy:
np.save(os.path.join(out_dir, name[k]+'_pred.npy'), pred_xyz.detach().cpu().numpy())
if draw:
if i == 0:
draw_pred.append(pred_xyz)
draw_text_pred.append(clip_text[k])
draw_name.append(name[k])
et_pred, em_pred = eval_wrapper.get_co_embeddings(word_embeddings, pos_one_hots, sent_len, pred_pose_eval, pred_len)
motion_multimodality_batch.append(em_pred.reshape(bs, 1, -1))
if i == 0:
pose = pose.cuda().float()
et, em = eval_wrapper.get_co_embeddings(word_embeddings, pos_one_hots, sent_len, pose, m_length)
motion_annotation_list.append(em)
motion_pred_list.append(em_pred)
if draw or savenpy:
pose = val_loader.dataset.inv_transform(pose.detach().cpu().numpy())
pose_xyz = recover_from_ric(torch.from_numpy(pose).float().cuda(), num_joints)
if savenpy:
for j in range(bs):
np.save(os.path.join(out_dir, name[j]+'_gt.npy'), pose_xyz[j][:m_length[j]].unsqueeze(0).cpu().numpy())
if draw:
for j in range(bs):
draw_org.append(pose_xyz[j][:m_length[j]].unsqueeze(0))
draw_text.append(clip_text[j])
temp_R, temp_match = calculate_R_precision(et.cpu().numpy(), em.cpu().numpy(), top_k=3, sum_all=True)
R_precision_real += temp_R
matching_score_real += temp_match
temp_R, temp_match = calculate_R_precision(et_pred.cpu().numpy(), em_pred.cpu().numpy(), top_k=3, sum_all=True)
R_precision += temp_R
matching_score_pred += temp_match
nb_sample += bs
motion_multimodality.append(torch.cat(motion_multimodality_batch, dim=1))
motion_annotation_np = torch.cat(motion_annotation_list, dim=0).cpu().numpy()
motion_pred_np = torch.cat(motion_pred_list, dim=0).cpu().numpy()
gt_mu, gt_cov = calculate_activation_statistics(motion_annotation_np)
mu, cov= calculate_activation_statistics(motion_pred_np)
diversity_real = calculate_diversity(motion_annotation_np, 300 if nb_sample > 300 else 100)
diversity = calculate_diversity(motion_pred_np, 300 if nb_sample > 300 else 100)
R_precision_real = R_precision_real / nb_sample
R_precision = R_precision / nb_sample
matching_score_real = matching_score_real / nb_sample
matching_score_pred = matching_score_pred / nb_sample
multimodality = 0
motion_multimodality = torch.cat(motion_multimodality, dim=0).cpu().numpy()
multimodality = calculate_multimodality(motion_multimodality, 10)
fid = calculate_frechet_distance(gt_mu, gt_cov, mu, cov)
msg = f"--> \t Eva. Iter {nb_iter} :, FID. {fid:.4f}, Diversity Real. {diversity_real:.4f}, Diversity. {diversity:.4f}, R_precision_real. {R_precision_real}, R_precision. {R_precision}, matching_score_real. {matching_score_real}, matching_score_pred. {matching_score_pred}, multimodality. {multimodality:.4f}"
logger.info(msg)
if draw:
for ii in range(len(draw_org)):
tensorborad_add_video_xyz(writer, draw_org[ii], nb_iter, tag='./Vis/'+draw_name[ii]+'_org', nb_vis=1, title_batch=[draw_text[ii]], outname=[os.path.join(out_dir, draw_name[ii]+'_skel_gt.gif')] if savegif else None)
tensorborad_add_video_xyz(writer, draw_pred[ii], nb_iter, tag='./Vis/'+draw_name[ii]+'_pred', nb_vis=1, title_batch=[draw_text_pred[ii]], outname=[os.path.join(out_dir, draw_name[ii]+'_skel_pred.gif')] if savegif else None)
trans.train()
return fid, best_iter, diversity, R_precision[0], R_precision[1], R_precision[2], matching_score_pred, multimodality, writer, logger
# (X - X_train)*(X - X_train) = -2X*X_train + X*X + X_train*X_train
def euclidean_distance_matrix(matrix1, matrix2):
"""
Params:
-- matrix1: N1 x D
-- matrix2: N2 x D
Returns:
-- dist: N1 x N2
dist[i, j] == distance(matrix1[i], matrix2[j])
"""
assert matrix1.shape[1] == matrix2.shape[1]
d1 = -2 * np.dot(matrix1, matrix2.T) # shape (num_test, num_train)
d2 = np.sum(np.square(matrix1), axis=1, keepdims=True) # shape (num_test, 1)
d3 = np.sum(np.square(matrix2), axis=1) # shape (num_train, )
dists = np.sqrt(d1 + d2 + d3) # broadcasting
return dists
def calculate_top_k(mat, top_k):
size = mat.shape[0]
gt_mat = np.expand_dims(np.arange(size), 1).repeat(size, 1)
bool_mat = (mat == gt_mat)
correct_vec = False
top_k_list = []
for i in range(top_k):
# print(correct_vec, bool_mat[:, i])
correct_vec = (correct_vec | bool_mat[:, i])
# print(correct_vec)
top_k_list.append(correct_vec[:, None])
top_k_mat = np.concatenate(top_k_list, axis=1)
return top_k_mat
def calculate_R_precision(embedding1, embedding2, top_k, sum_all=False):
dist_mat = euclidean_distance_matrix(embedding1, embedding2)
matching_score = dist_mat.trace()
argmax = np.argsort(dist_mat, axis=1)
top_k_mat = calculate_top_k(argmax, top_k)
if sum_all:
return top_k_mat.sum(axis=0), matching_score
else:
return top_k_mat, matching_score
def calculate_multimodality(activation, multimodality_times):
assert len(activation.shape) == 3
assert activation.shape[1] > multimodality_times
num_per_sent = activation.shape[1]
first_dices = np.random.choice(num_per_sent, multimodality_times, replace=False)
second_dices = np.random.choice(num_per_sent, multimodality_times, replace=False)
dist = linalg.norm(activation[:, first_dices] - activation[:, second_dices], axis=2)
return dist.mean()
def calculate_diversity(activation, diversity_times):
assert len(activation.shape) == 2
assert activation.shape[0] > diversity_times
num_samples = activation.shape[0]
first_indices = np.random.choice(num_samples, diversity_times, replace=False)
second_indices = np.random.choice(num_samples, diversity_times, replace=False)
dist = linalg.norm(activation[first_indices] - activation[second_indices], axis=1)
return dist.mean()
def calculate_frechet_distance(mu1, sigma1, mu2, sigma2, eps=1e-6):
mu1 = np.atleast_1d(mu1)
mu2 = np.atleast_1d(mu2)
sigma1 = np.atleast_2d(sigma1)
sigma2 = np.atleast_2d(sigma2)
assert mu1.shape == mu2.shape, \
'Training and test mean vectors have different lengths'
assert sigma1.shape == sigma2.shape, \
'Training and test covariances have different dimensions'
diff = mu1 - mu2
# Product might be almost singular
covmean, _ = linalg.sqrtm(sigma1.dot(sigma2), disp=False)
if not np.isfinite(covmean).all():
msg = ('fid calculation produces singular product; '
'adding %s to diagonal of cov estimates') % eps
print(msg)
offset = np.eye(sigma1.shape[0]) * eps
covmean = linalg.sqrtm((sigma1 + offset).dot(sigma2 + offset))
# Numerical error might give slight imaginary component
if np.iscomplexobj(covmean):
if not np.allclose(np.diagonal(covmean).imag, 0, atol=1e-3):
m = np.max(np.abs(covmean.imag))
raise ValueError('Imaginary component {}'.format(m))
covmean = covmean.real
tr_covmean = np.trace(covmean)
return (diff.dot(diff) + np.trace(sigma1)
+ np.trace(sigma2) - 2 * tr_covmean)
def calculate_activation_statistics(activations):
mu = np.mean(activations, axis=0)
cov = np.cov(activations, rowvar=False)
return mu, cov
def calculate_frechet_feature_distance(feature_list1, feature_list2):
feature_list1 = np.stack(feature_list1)
feature_list2 = np.stack(feature_list2)
# normalize the scale
mean = np.mean(feature_list1, axis=0)
std = np.std(feature_list1, axis=0) + 1e-10
feature_list1 = (feature_list1 - mean) / std
feature_list2 = (feature_list2 - mean) / std
dist = calculate_frechet_distance(
mu1=np.mean(feature_list1, axis=0),
sigma1=np.cov(feature_list1, rowvar=False),
mu2=np.mean(feature_list2, axis=0),
sigma2=np.cov(feature_list2, rowvar=False),
)
return dist