|
import os |
|
|
|
import clip |
|
import numpy as np |
|
import torch |
|
from scipy import linalg |
|
|
|
|
|
from utils.motion_process import recover_from_ric |
|
from exit.utils import get_model, visualize_2motions, generate_src_mask |
|
from tqdm import tqdm |
|
|
|
|
|
def tensorborad_add_video_xyz(writer, xyz, nb_iter, tag, nb_vis=4, title_batch=None, outname=None): |
|
xyz = xyz[:1] |
|
bs, seq = xyz.shape[:2] |
|
xyz = xyz.reshape(bs, seq, -1, 3) |
|
plot_xyz = plot_3d.draw_to_batch(xyz.cpu().numpy(),title_batch, outname) |
|
plot_xyz =np.transpose(plot_xyz, (0, 1, 4, 2, 3)) |
|
writer.add_video(tag, plot_xyz, nb_iter, fps = 20) |
|
|
|
@torch.no_grad() |
|
def evaluation_vqvae(out_dir, val_loader, net, logger, writer, nb_iter, best_fid, best_iter, best_div, best_top1, best_top2, best_top3, best_matching, eval_wrapper, draw = True, save = True, savegif=False, savenpy=False) : |
|
net.eval() |
|
nb_sample = 0 |
|
|
|
draw_org = [] |
|
draw_pred = [] |
|
draw_text = [] |
|
|
|
|
|
motion_annotation_list = [] |
|
motion_pred_list = [] |
|
|
|
R_precision_real = 0 |
|
R_precision = 0 |
|
|
|
nb_sample = 0 |
|
matching_score_real = 0 |
|
matching_score_pred = 0 |
|
for batch in val_loader: |
|
word_embeddings, pos_one_hots, caption, sent_len, motion, m_length, token, name = batch |
|
|
|
motion = motion.cuda() |
|
et, em = eval_wrapper.get_co_embeddings(word_embeddings, pos_one_hots, sent_len, motion, m_length) |
|
bs, seq = motion.shape[0], motion.shape[1] |
|
|
|
num_joints = 21 if motion.shape[-1] == 251 else 22 |
|
|
|
pred_pose_eval = torch.zeros((bs, seq, motion.shape[-1])).cuda() |
|
|
|
for i in range(bs): |
|
pose = val_loader.dataset.inv_transform(motion[i:i+1, :m_length[i], :].detach().cpu().numpy()) |
|
|
|
|
|
|
|
pred_pose, loss_commit, perplexity = net(motion[i:i+1, :m_length[i]]) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
pred_pose_eval[i:i+1,:m_length[i],:] = pred_pose |
|
|
|
|
|
|
|
|
|
|
|
|
|
et_pred, em_pred = eval_wrapper.get_co_embeddings(word_embeddings, pos_one_hots, sent_len, pred_pose_eval, m_length) |
|
|
|
motion_pred_list.append(em_pred) |
|
motion_annotation_list.append(em) |
|
|
|
temp_R, temp_match = calculate_R_precision(et.cpu().numpy(), em.cpu().numpy(), top_k=3, sum_all=True) |
|
R_precision_real += temp_R |
|
matching_score_real += temp_match |
|
temp_R, temp_match = calculate_R_precision(et_pred.cpu().numpy(), em_pred.cpu().numpy(), top_k=3, sum_all=True) |
|
R_precision += temp_R |
|
matching_score_pred += temp_match |
|
|
|
nb_sample += bs |
|
|
|
motion_annotation_np = torch.cat(motion_annotation_list, dim=0).cpu().numpy() |
|
motion_pred_np = torch.cat(motion_pred_list, dim=0).cpu().numpy() |
|
gt_mu, gt_cov = calculate_activation_statistics(motion_annotation_np) |
|
mu, cov= calculate_activation_statistics(motion_pred_np) |
|
|
|
diversity_real = calculate_diversity(motion_annotation_np, 300 if nb_sample > 300 else 100) |
|
diversity = calculate_diversity(motion_pred_np, 300 if nb_sample > 300 else 100) |
|
|
|
R_precision_real = R_precision_real / nb_sample |
|
R_precision = R_precision / nb_sample |
|
|
|
matching_score_real = matching_score_real / nb_sample |
|
matching_score_pred = matching_score_pred / nb_sample |
|
|
|
fid = calculate_frechet_distance(gt_mu, gt_cov, mu, cov) |
|
|
|
msg = f"--> \t Eva. Iter {nb_iter} :, FID. {fid:.4f}, Diversity Real. {diversity_real:.4f}, Diversity. {diversity:.4f}, R_precision_real. {R_precision_real}, R_precision. {R_precision}, matching_score_real. {matching_score_real}, matching_score_pred. {matching_score_pred}" |
|
logger.info(msg) |
|
|
|
if draw: |
|
writer.add_scalar('./Test/FID', fid, nb_iter) |
|
writer.add_scalar('./Test/Diversity', diversity, nb_iter) |
|
writer.add_scalar('./Test/top1', R_precision[0], nb_iter) |
|
writer.add_scalar('./Test/top2', R_precision[1], nb_iter) |
|
writer.add_scalar('./Test/top3', R_precision[2], nb_iter) |
|
writer.add_scalar('./Test/matching_score', matching_score_pred, nb_iter) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if fid < best_fid : |
|
msg = f"--> --> \t FID Improved from {best_fid:.5f} to {fid:.5f} !!!" |
|
logger.info(msg) |
|
best_fid, best_iter = fid, nb_iter |
|
|
|
|
|
|
|
if abs(diversity_real - diversity) < abs(diversity_real - best_div) : |
|
msg = f"--> --> \t Diversity Improved from {best_div:.5f} to {diversity:.5f} !!!" |
|
logger.info(msg) |
|
best_div = diversity |
|
|
|
|
|
|
|
if R_precision[0] > best_top1 : |
|
msg = f"--> --> \t Top1 Improved from {best_top1:.4f} to {R_precision[0]:.4f} !!!" |
|
logger.info(msg) |
|
best_top1 = R_precision[0] |
|
|
|
|
|
|
|
if R_precision[1] > best_top2 : |
|
msg = f"--> --> \t Top2 Improved from {best_top2:.4f} to {R_precision[1]:.4f} !!!" |
|
logger.info(msg) |
|
best_top2 = R_precision[1] |
|
|
|
if R_precision[2] > best_top3 : |
|
msg = f"--> --> \t Top3 Improved from {best_top3:.4f} to {R_precision[2]:.4f} !!!" |
|
logger.info(msg) |
|
best_top3 = R_precision[2] |
|
|
|
if matching_score_pred < best_matching : |
|
msg = f"--> --> \t matching_score Improved from {best_matching:.5f} to {matching_score_pred:.5f} !!!" |
|
logger.info(msg) |
|
best_matching = matching_score_pred |
|
|
|
|
|
|
|
if save: |
|
torch.save({'net' : net.state_dict()}, os.path.join(out_dir, 'net_last.pth')) |
|
|
|
net.train() |
|
return best_fid, best_iter, best_div, best_top1, best_top2, best_top3, best_matching, writer, logger |
|
|
|
|
|
@torch.no_grad() |
|
def evaluation_transformer(out_dir, val_loader, net, trans, logger, writer, nb_iter, best_fid, best_iter, best_div, best_top1, best_top2, best_top3, best_matching, clip_model, eval_wrapper, dataname='t2m', draw = True, save = True, savegif=False, num_repeat=1, rand_pos=False, CFG=-1) : |
|
if num_repeat < 0: |
|
is_avg_all = True |
|
num_repeat = -num_repeat |
|
else: |
|
is_avg_all = False |
|
|
|
|
|
trans.eval() |
|
nb_sample = 0 |
|
|
|
draw_org = [] |
|
draw_pred = [] |
|
draw_text = [] |
|
draw_text_pred = [] |
|
|
|
motion_annotation_list = [] |
|
motion_pred_list = [] |
|
motion_multimodality = [] |
|
R_precision_real = 0 |
|
R_precision = 0 |
|
matching_score_real = 0 |
|
matching_score_pred = 0 |
|
|
|
nb_sample = 0 |
|
blank_id = get_model(trans).num_vq |
|
for batch in tqdm(val_loader): |
|
word_embeddings, pos_one_hots, clip_text, sent_len, pose, m_length, token, name = batch |
|
|
|
bs, seq = pose.shape[:2] |
|
num_joints = 21 if pose.shape[-1] == 251 else 22 |
|
|
|
text = clip.tokenize(clip_text, truncate=True).cuda() |
|
|
|
feat_clip_text, word_emb = clip_model(text) |
|
|
|
motion_multimodality_batch = [] |
|
m_tokens_len = torch.ceil((m_length)/4) |
|
|
|
|
|
pred_len = m_length.cuda() |
|
pred_tok_len = m_tokens_len |
|
|
|
|
|
for i in range(num_repeat): |
|
pred_pose_eval = torch.zeros((bs, seq, pose.shape[-1])).cuda() |
|
|
|
|
|
index_motion = trans(feat_clip_text, word_emb, type="sample", m_length=pred_len, rand_pos=rand_pos, CFG=CFG) |
|
|
|
|
|
|
|
pred_length = (index_motion >= blank_id).int() |
|
pred_length = torch.topk(pred_length, k=1, dim=1).indices.squeeze().float() |
|
|
|
|
|
for k in range(bs): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
pred_pose = net(index_motion[k:k+1, :int(pred_tok_len[k].item())], type='decode') |
|
pred_pose_eval[k:k+1, :int(pred_len[k].item())] = pred_pose |
|
et_pred, em_pred = eval_wrapper.get_co_embeddings(word_embeddings, pos_one_hots, sent_len, pred_pose_eval, m_length) |
|
|
|
|
|
motion_multimodality_batch.append(em_pred.reshape(bs, 1, -1)) |
|
|
|
if i == 0 or is_avg_all: |
|
pose = pose.cuda().float() |
|
|
|
et, em = eval_wrapper.get_co_embeddings(word_embeddings, pos_one_hots, sent_len, pose, m_length) |
|
motion_annotation_list.append(em) |
|
motion_pred_list.append(em_pred) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
temp_R, temp_match = calculate_R_precision(et.cpu().numpy(), em.cpu().numpy(), top_k=3, sum_all=True) |
|
R_precision_real += temp_R |
|
matching_score_real += temp_match |
|
temp_R, temp_match = calculate_R_precision(et_pred.cpu().numpy(), em_pred.cpu().numpy(), top_k=3, sum_all=True) |
|
R_precision += temp_R |
|
matching_score_pred += temp_match |
|
|
|
nb_sample += bs |
|
motion_multimodality.append(torch.cat(motion_multimodality_batch, dim=1)) |
|
|
|
motion_annotation_np = torch.cat(motion_annotation_list, dim=0).cpu().numpy() |
|
motion_pred_np = torch.cat(motion_pred_list, dim=0).cpu().numpy() |
|
gt_mu, gt_cov = calculate_activation_statistics(motion_annotation_np) |
|
mu, cov= calculate_activation_statistics(motion_pred_np) |
|
|
|
diversity_real = calculate_diversity(motion_annotation_np, 300 if nb_sample > 300 else 100) |
|
diversity = calculate_diversity(motion_pred_np, 300 if nb_sample > 300 else 100) |
|
|
|
R_precision_real = R_precision_real / nb_sample |
|
R_precision = R_precision / nb_sample |
|
|
|
matching_score_real = matching_score_real / nb_sample |
|
matching_score_pred = matching_score_pred / nb_sample |
|
|
|
multimodality = 0 |
|
motion_multimodality = torch.cat(motion_multimodality, dim=0).cpu().numpy() |
|
if num_repeat > 1: |
|
multimodality = calculate_multimodality(motion_multimodality, 10) |
|
|
|
fid = calculate_frechet_distance(gt_mu, gt_cov, mu, cov) |
|
|
|
msg = f"--> \t Eva. Iter {nb_iter} :, \n\ |
|
FID. {fid:.4f} , \n\ |
|
Diversity Real. {diversity_real:.4f}, \n\ |
|
Diversity. {diversity:.4f}, \n\ |
|
R_precision_real. {R_precision_real}, \n\ |
|
R_precision. {R_precision}, \n\ |
|
matching_score_real. {matching_score_real}, \n\ |
|
matching_score_pred. {matching_score_pred}, \n\ |
|
multimodality. {multimodality:.4f}" |
|
logger.info(msg) |
|
|
|
|
|
if draw: |
|
writer.add_scalar('./Test/FID', fid, nb_iter) |
|
writer.add_scalar('./Test/Diversity', diversity, nb_iter) |
|
writer.add_scalar('./Test/top1', R_precision[0], nb_iter) |
|
writer.add_scalar('./Test/top2', R_precision[1], nb_iter) |
|
writer.add_scalar('./Test/top3', R_precision[2], nb_iter) |
|
writer.add_scalar('./Test/matching_score', matching_score_pred, nb_iter) |
|
writer.add_scalar('./Test/multimodality', multimodality, nb_iter) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if fid < best_fid : |
|
msg = f"--> --> \t FID Improved from {best_fid:.5f} to {fid:.5f} !!!" |
|
logger.info(msg) |
|
best_fid, best_iter = fid, nb_iter |
|
|
|
|
|
|
|
if matching_score_pred < best_matching : |
|
msg = f"--> --> \t matching_score Improved from {best_matching:.5f} to {matching_score_pred:.5f} !!!" |
|
logger.info(msg) |
|
best_matching = matching_score_pred |
|
|
|
if abs(diversity_real - diversity) < abs(diversity_real - best_div) : |
|
msg = f"--> --> \t Diversity Improved from {best_div:.5f} to {diversity:.5f} !!!" |
|
logger.info(msg) |
|
best_div = diversity |
|
|
|
if R_precision[0] > best_top1 : |
|
msg = f"--> --> \t Top1 Improved from {best_top1:.4f} to {R_precision[0]:.4f} !!!" |
|
logger.info(msg) |
|
best_top1 = R_precision[0] |
|
|
|
if R_precision[1] > best_top2 : |
|
msg = f"--> --> \t Top2 Improved from {best_top2:.4f} to {R_precision[1]:.4f} !!!" |
|
logger.info(msg) |
|
best_top2 = R_precision[1] |
|
|
|
if R_precision[2] > best_top3 : |
|
msg = f"--> --> \t Top3 Improved from {best_top3:.4f} to {R_precision[2]:.4f} !!!" |
|
logger.info(msg) |
|
best_top3 = R_precision[2] |
|
|
|
if save: |
|
torch.save({'trans' : get_model(trans).state_dict()}, os.path.join(out_dir, 'net_last.pth')) |
|
|
|
trans.train() |
|
return pred_pose_eval, pose, m_length, clip_text, best_fid, best_iter, best_div, best_top1, best_top2, best_top3, best_matching, multimodality, writer, logger |
|
|
|
def evaluation_transformer_uplow(out_dir, val_loader, net, trans, logger, writer, nb_iter, best_fid, best_iter, best_div, best_top1, best_top2, best_top3, best_matching, clip_model, eval_wrapper, dataname, draw = True, save = True, savegif=False, num_repeat=1, rand_pos=False, CFG=-1) : |
|
from utils.humanml_utils import HML_UPPER_BODY_MASK, HML_LOWER_BODY_MASK |
|
|
|
trans.eval() |
|
nb_sample = 0 |
|
|
|
draw_org = [] |
|
draw_pred = [] |
|
draw_text = [] |
|
draw_text_pred = [] |
|
|
|
motion_annotation_list = [] |
|
motion_pred_list = [] |
|
motion_multimodality = [] |
|
R_precision_real = 0 |
|
R_precision = 0 |
|
matching_score_real = 0 |
|
matching_score_pred = 0 |
|
|
|
nb_sample = 0 |
|
blank_id = get_model(trans).num_vq |
|
for batch in tqdm(val_loader): |
|
word_embeddings, pos_one_hots, clip_text, sent_len, pose, m_length, token, name = batch |
|
pose = pose.cuda().float() |
|
pose_lower = pose[..., HML_LOWER_BODY_MASK] |
|
bs, seq = pose.shape[:2] |
|
num_joints = 21 if pose.shape[-1] == 251 else 22 |
|
|
|
text = clip.tokenize(clip_text, truncate=True).cuda() |
|
|
|
feat_clip_text, word_emb = clip_model(text) |
|
|
|
motion_multimodality_batch = [] |
|
m_tokens_len = torch.ceil((m_length)/4) |
|
|
|
|
|
pred_len = m_length.cuda() |
|
pred_tok_len = m_tokens_len |
|
|
|
max_motion_length = int(seq/4) + 1 |
|
mot_end_idx = get_model(net).vqvae.num_code |
|
mot_pad_idx = get_model(net).vqvae.num_code + 1 |
|
target_lower = [] |
|
for k in range(bs): |
|
target = net(pose[k:k+1, :m_length[k]], type='encode') |
|
if m_tokens_len[k]+1 < max_motion_length: |
|
target = torch.cat([target, |
|
torch.ones((1, 1, 2), dtype=int, device=target.device) * mot_end_idx, |
|
torch.ones((1, max_motion_length-1-m_tokens_len[k].int().item(), 2), dtype=int, device=target.device) * mot_pad_idx], axis=1) |
|
else: |
|
target = torch.cat([target, |
|
torch.ones((1, 1, 2), dtype=int, device=target.device) * mot_end_idx], axis=1) |
|
target_lower.append(target[..., 1]) |
|
target_lower = torch.cat(target_lower, axis=0) |
|
|
|
for i in range(num_repeat): |
|
pred_pose_eval = torch.zeros((bs, seq, pose.shape[-1])).cuda() |
|
|
|
|
|
index_motion = trans(feat_clip_text, target_lower, word_emb, type="sample", m_length=pred_len, rand_pos=rand_pos, CFG=CFG) |
|
|
|
|
|
|
|
pred_length = (index_motion >= blank_id).int() |
|
pred_length = torch.topk(pred_length, k=1, dim=1).indices.squeeze().float() |
|
|
|
|
|
for k in range(bs): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
all_tokens = torch.cat([ |
|
index_motion[k:k+1, :int(pred_tok_len[k].item()), None], |
|
target_lower[k:k+1, :int(pred_tok_len[k].item()), None] |
|
], axis=-1) |
|
pred_pose = net(all_tokens, type='decode') |
|
pred_pose_eval[k:k+1, :int(pred_len[k].item())] = pred_pose |
|
pred_pose_eval[..., HML_LOWER_BODY_MASK] = pose_lower |
|
et_pred, em_pred = eval_wrapper.get_co_embeddings(word_embeddings, pos_one_hots, sent_len, pred_pose_eval, m_length) |
|
|
|
|
|
motion_multimodality_batch.append(em_pred.reshape(bs, 1, -1)) |
|
|
|
if i == 0: |
|
|
|
|
|
et, em = eval_wrapper.get_co_embeddings(word_embeddings, pos_one_hots, sent_len, pose, m_length) |
|
motion_annotation_list.append(em) |
|
motion_pred_list.append(em_pred) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
temp_R, temp_match = calculate_R_precision(et.cpu().numpy(), em.cpu().numpy(), top_k=3, sum_all=True) |
|
R_precision_real += temp_R |
|
matching_score_real += temp_match |
|
temp_R, temp_match = calculate_R_precision(et_pred.cpu().numpy(), em_pred.cpu().numpy(), top_k=3, sum_all=True) |
|
R_precision += temp_R |
|
matching_score_pred += temp_match |
|
|
|
nb_sample += bs |
|
motion_multimodality.append(torch.cat(motion_multimodality_batch, dim=1)) |
|
|
|
motion_annotation_np = torch.cat(motion_annotation_list, dim=0).cpu().numpy() |
|
motion_pred_np = torch.cat(motion_pred_list, dim=0).cpu().numpy() |
|
gt_mu, gt_cov = calculate_activation_statistics(motion_annotation_np) |
|
mu, cov= calculate_activation_statistics(motion_pred_np) |
|
|
|
diversity_real = calculate_diversity(motion_annotation_np, 300 if nb_sample > 300 else 100) |
|
diversity = calculate_diversity(motion_pred_np, 300 if nb_sample > 300 else 100) |
|
|
|
R_precision_real = R_precision_real / nb_sample |
|
R_precision = R_precision / nb_sample |
|
|
|
matching_score_real = matching_score_real / nb_sample |
|
matching_score_pred = matching_score_pred / nb_sample |
|
|
|
multimodality = 0 |
|
motion_multimodality = torch.cat(motion_multimodality, dim=0).cpu().numpy() |
|
if num_repeat > 1: |
|
multimodality = calculate_multimodality(motion_multimodality, 10) |
|
|
|
fid = calculate_frechet_distance(gt_mu, gt_cov, mu, cov) |
|
|
|
msg = f"--> \t Eva. Iter {nb_iter} :, \n\ |
|
FID. {fid:.4f} , \n\ |
|
Diversity Real. {diversity_real:.4f}, \n\ |
|
Diversity. {diversity:.4f}, \n\ |
|
R_precision_real. {R_precision_real}, \n\ |
|
R_precision. {R_precision}, \n\ |
|
matching_score_real. {matching_score_real}, \n\ |
|
matching_score_pred. {matching_score_pred}, \n\ |
|
multimodality. {multimodality:.4f}" |
|
logger.info(msg) |
|
|
|
|
|
if draw: |
|
writer.add_scalar('./Test/FID', fid, nb_iter) |
|
writer.add_scalar('./Test/Diversity', diversity, nb_iter) |
|
writer.add_scalar('./Test/top1', R_precision[0], nb_iter) |
|
writer.add_scalar('./Test/top2', R_precision[1], nb_iter) |
|
writer.add_scalar('./Test/top3', R_precision[2], nb_iter) |
|
writer.add_scalar('./Test/matching_score', matching_score_pred, nb_iter) |
|
writer.add_scalar('./Test/multimodality', multimodality, nb_iter) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if fid < best_fid : |
|
msg = f"--> --> \t FID Improved from {best_fid:.5f} to {fid:.5f} !!!" |
|
logger.info(msg) |
|
best_fid, best_iter = fid, nb_iter |
|
|
|
|
|
|
|
if matching_score_pred < best_matching : |
|
msg = f"--> --> \t matching_score Improved from {best_matching:.5f} to {matching_score_pred:.5f} !!!" |
|
logger.info(msg) |
|
best_matching = matching_score_pred |
|
|
|
if abs(diversity_real - diversity) < abs(diversity_real - best_div) : |
|
msg = f"--> --> \t Diversity Improved from {best_div:.5f} to {diversity:.5f} !!!" |
|
logger.info(msg) |
|
best_div = diversity |
|
|
|
if R_precision[0] > best_top1 : |
|
msg = f"--> --> \t Top1 Improved from {best_top1:.4f} to {R_precision[0]:.4f} !!!" |
|
logger.info(msg) |
|
best_top1 = R_precision[0] |
|
|
|
if R_precision[1] > best_top2 : |
|
msg = f"--> --> \t Top2 Improved from {best_top2:.4f} to {R_precision[1]:.4f} !!!" |
|
logger.info(msg) |
|
best_top2 = R_precision[1] |
|
|
|
if R_precision[2] > best_top3 : |
|
msg = f"--> --> \t Top3 Improved from {best_top3:.4f} to {R_precision[2]:.4f} !!!" |
|
logger.info(msg) |
|
best_top3 = R_precision[2] |
|
|
|
if save: |
|
torch.save({'trans' : get_model(trans).state_dict()}, os.path.join(out_dir, 'net_last.pth')) |
|
|
|
trans.train() |
|
return pred_pose_eval, pose, m_length, clip_text, best_fid, best_iter, best_div, best_top1, best_top2, best_top3, best_matching, multimodality, writer, logger |
|
|
|
@torch.no_grad() |
|
def evaluation_transformer_test(out_dir, val_loader, net, trans, logger, writer, nb_iter, best_fid, best_iter, best_div, best_top1, best_top2, best_top3, best_matching, best_multi, clip_model, eval_wrapper, draw = True, save = True, savegif=False, savenpy=False) : |
|
|
|
trans.eval() |
|
nb_sample = 0 |
|
|
|
draw_org = [] |
|
draw_pred = [] |
|
draw_text = [] |
|
draw_text_pred = [] |
|
draw_name = [] |
|
|
|
motion_annotation_list = [] |
|
motion_pred_list = [] |
|
motion_multimodality = [] |
|
R_precision_real = 0 |
|
R_precision = 0 |
|
matching_score_real = 0 |
|
matching_score_pred = 0 |
|
|
|
nb_sample = 0 |
|
|
|
for batch in val_loader: |
|
|
|
word_embeddings, pos_one_hots, clip_text, sent_len, pose, m_length, token, name = batch |
|
bs, seq = pose.shape[:2] |
|
num_joints = 21 if pose.shape[-1] == 251 else 22 |
|
|
|
text = clip.tokenize(clip_text, truncate=True).cuda() |
|
|
|
feat_clip_text = clip_model.encode_text(text).float() |
|
motion_multimodality_batch = [] |
|
for i in range(30): |
|
pred_pose_eval = torch.zeros((bs, seq, pose.shape[-1])).cuda() |
|
pred_len = torch.ones(bs).long() |
|
|
|
for k in range(bs): |
|
try: |
|
index_motion = trans.sample(feat_clip_text[k:k+1], True) |
|
except: |
|
index_motion = torch.ones(1,1).cuda().long() |
|
|
|
pred_pose = net.forward_decoder(index_motion) |
|
cur_len = pred_pose.shape[1] |
|
|
|
pred_len[k] = min(cur_len, seq) |
|
pred_pose_eval[k:k+1, :cur_len] = pred_pose[:, :seq] |
|
|
|
if i == 0 and (draw or savenpy): |
|
pred_denorm = val_loader.dataset.inv_transform(pred_pose.detach().cpu().numpy()) |
|
pred_xyz = recover_from_ric(torch.from_numpy(pred_denorm).float().cuda(), num_joints) |
|
|
|
if savenpy: |
|
np.save(os.path.join(out_dir, name[k]+'_pred.npy'), pred_xyz.detach().cpu().numpy()) |
|
|
|
if draw: |
|
if i == 0: |
|
draw_pred.append(pred_xyz) |
|
draw_text_pred.append(clip_text[k]) |
|
draw_name.append(name[k]) |
|
|
|
et_pred, em_pred = eval_wrapper.get_co_embeddings(word_embeddings, pos_one_hots, sent_len, pred_pose_eval, pred_len) |
|
|
|
motion_multimodality_batch.append(em_pred.reshape(bs, 1, -1)) |
|
|
|
if i == 0: |
|
pose = pose.cuda().float() |
|
|
|
et, em = eval_wrapper.get_co_embeddings(word_embeddings, pos_one_hots, sent_len, pose, m_length) |
|
motion_annotation_list.append(em) |
|
motion_pred_list.append(em_pred) |
|
|
|
if draw or savenpy: |
|
pose = val_loader.dataset.inv_transform(pose.detach().cpu().numpy()) |
|
pose_xyz = recover_from_ric(torch.from_numpy(pose).float().cuda(), num_joints) |
|
|
|
if savenpy: |
|
for j in range(bs): |
|
np.save(os.path.join(out_dir, name[j]+'_gt.npy'), pose_xyz[j][:m_length[j]].unsqueeze(0).cpu().numpy()) |
|
|
|
if draw: |
|
for j in range(bs): |
|
draw_org.append(pose_xyz[j][:m_length[j]].unsqueeze(0)) |
|
draw_text.append(clip_text[j]) |
|
|
|
temp_R, temp_match = calculate_R_precision(et.cpu().numpy(), em.cpu().numpy(), top_k=3, sum_all=True) |
|
R_precision_real += temp_R |
|
matching_score_real += temp_match |
|
temp_R, temp_match = calculate_R_precision(et_pred.cpu().numpy(), em_pred.cpu().numpy(), top_k=3, sum_all=True) |
|
R_precision += temp_R |
|
matching_score_pred += temp_match |
|
|
|
nb_sample += bs |
|
|
|
motion_multimodality.append(torch.cat(motion_multimodality_batch, dim=1)) |
|
|
|
motion_annotation_np = torch.cat(motion_annotation_list, dim=0).cpu().numpy() |
|
motion_pred_np = torch.cat(motion_pred_list, dim=0).cpu().numpy() |
|
gt_mu, gt_cov = calculate_activation_statistics(motion_annotation_np) |
|
mu, cov= calculate_activation_statistics(motion_pred_np) |
|
|
|
diversity_real = calculate_diversity(motion_annotation_np, 300 if nb_sample > 300 else 100) |
|
diversity = calculate_diversity(motion_pred_np, 300 if nb_sample > 300 else 100) |
|
|
|
R_precision_real = R_precision_real / nb_sample |
|
R_precision = R_precision / nb_sample |
|
|
|
matching_score_real = matching_score_real / nb_sample |
|
matching_score_pred = matching_score_pred / nb_sample |
|
|
|
multimodality = 0 |
|
motion_multimodality = torch.cat(motion_multimodality, dim=0).cpu().numpy() |
|
multimodality = calculate_multimodality(motion_multimodality, 10) |
|
|
|
fid = calculate_frechet_distance(gt_mu, gt_cov, mu, cov) |
|
|
|
msg = f"--> \t Eva. Iter {nb_iter} :, FID. {fid:.4f}, Diversity Real. {diversity_real:.4f}, Diversity. {diversity:.4f}, R_precision_real. {R_precision_real}, R_precision. {R_precision}, matching_score_real. {matching_score_real}, matching_score_pred. {matching_score_pred}, multimodality. {multimodality:.4f}" |
|
logger.info(msg) |
|
|
|
|
|
if draw: |
|
for ii in range(len(draw_org)): |
|
tensorborad_add_video_xyz(writer, draw_org[ii], nb_iter, tag='./Vis/'+draw_name[ii]+'_org', nb_vis=1, title_batch=[draw_text[ii]], outname=[os.path.join(out_dir, draw_name[ii]+'_skel_gt.gif')] if savegif else None) |
|
|
|
tensorborad_add_video_xyz(writer, draw_pred[ii], nb_iter, tag='./Vis/'+draw_name[ii]+'_pred', nb_vis=1, title_batch=[draw_text_pred[ii]], outname=[os.path.join(out_dir, draw_name[ii]+'_skel_pred.gif')] if savegif else None) |
|
|
|
trans.train() |
|
return fid, best_iter, diversity, R_precision[0], R_precision[1], R_precision[2], matching_score_pred, multimodality, writer, logger |
|
|
|
|
|
def euclidean_distance_matrix(matrix1, matrix2): |
|
""" |
|
Params: |
|
-- matrix1: N1 x D |
|
-- matrix2: N2 x D |
|
Returns: |
|
-- dist: N1 x N2 |
|
dist[i, j] == distance(matrix1[i], matrix2[j]) |
|
""" |
|
assert matrix1.shape[1] == matrix2.shape[1] |
|
d1 = -2 * np.dot(matrix1, matrix2.T) |
|
d2 = np.sum(np.square(matrix1), axis=1, keepdims=True) |
|
d3 = np.sum(np.square(matrix2), axis=1) |
|
dists = np.sqrt(d1 + d2 + d3) |
|
return dists |
|
|
|
|
|
|
|
def calculate_top_k(mat, top_k): |
|
size = mat.shape[0] |
|
gt_mat = np.expand_dims(np.arange(size), 1).repeat(size, 1) |
|
bool_mat = (mat == gt_mat) |
|
correct_vec = False |
|
top_k_list = [] |
|
for i in range(top_k): |
|
|
|
correct_vec = (correct_vec | bool_mat[:, i]) |
|
|
|
top_k_list.append(correct_vec[:, None]) |
|
top_k_mat = np.concatenate(top_k_list, axis=1) |
|
return top_k_mat |
|
|
|
|
|
def calculate_R_precision(embedding1, embedding2, top_k, sum_all=False): |
|
dist_mat = euclidean_distance_matrix(embedding1, embedding2) |
|
matching_score = dist_mat.trace() |
|
argmax = np.argsort(dist_mat, axis=1) |
|
top_k_mat = calculate_top_k(argmax, top_k) |
|
if sum_all: |
|
return top_k_mat.sum(axis=0), matching_score |
|
else: |
|
return top_k_mat, matching_score |
|
|
|
def calculate_multimodality(activation, multimodality_times): |
|
assert len(activation.shape) == 3 |
|
assert activation.shape[1] > multimodality_times |
|
num_per_sent = activation.shape[1] |
|
|
|
first_dices = np.random.choice(num_per_sent, multimodality_times, replace=False) |
|
second_dices = np.random.choice(num_per_sent, multimodality_times, replace=False) |
|
dist = linalg.norm(activation[:, first_dices] - activation[:, second_dices], axis=2) |
|
return dist.mean() |
|
|
|
|
|
def calculate_diversity(activation, diversity_times): |
|
assert len(activation.shape) == 2 |
|
assert activation.shape[0] > diversity_times |
|
num_samples = activation.shape[0] |
|
|
|
first_indices = np.random.choice(num_samples, diversity_times, replace=False) |
|
second_indices = np.random.choice(num_samples, diversity_times, replace=False) |
|
dist = linalg.norm(activation[first_indices] - activation[second_indices], axis=1) |
|
return dist.mean() |
|
|
|
|
|
|
|
def calculate_frechet_distance(mu1, sigma1, mu2, sigma2, eps=1e-6): |
|
|
|
mu1 = np.atleast_1d(mu1) |
|
mu2 = np.atleast_1d(mu2) |
|
|
|
sigma1 = np.atleast_2d(sigma1) |
|
sigma2 = np.atleast_2d(sigma2) |
|
|
|
assert mu1.shape == mu2.shape, \ |
|
'Training and test mean vectors have different lengths' |
|
assert sigma1.shape == sigma2.shape, \ |
|
'Training and test covariances have different dimensions' |
|
|
|
diff = mu1 - mu2 |
|
|
|
|
|
covmean, _ = linalg.sqrtm(sigma1.dot(sigma2), disp=False) |
|
if not np.isfinite(covmean).all(): |
|
msg = ('fid calculation produces singular product; ' |
|
'adding %s to diagonal of cov estimates') % eps |
|
print(msg) |
|
offset = np.eye(sigma1.shape[0]) * eps |
|
covmean = linalg.sqrtm((sigma1 + offset).dot(sigma2 + offset)) |
|
|
|
|
|
if np.iscomplexobj(covmean): |
|
if not np.allclose(np.diagonal(covmean).imag, 0, atol=1e-3): |
|
m = np.max(np.abs(covmean.imag)) |
|
raise ValueError('Imaginary component {}'.format(m)) |
|
covmean = covmean.real |
|
|
|
tr_covmean = np.trace(covmean) |
|
|
|
return (diff.dot(diff) + np.trace(sigma1) |
|
+ np.trace(sigma2) - 2 * tr_covmean) |
|
|
|
|
|
|
|
def calculate_activation_statistics(activations): |
|
|
|
mu = np.mean(activations, axis=0) |
|
cov = np.cov(activations, rowvar=False) |
|
return mu, cov |
|
|
|
|
|
def calculate_frechet_feature_distance(feature_list1, feature_list2): |
|
feature_list1 = np.stack(feature_list1) |
|
feature_list2 = np.stack(feature_list2) |
|
|
|
|
|
mean = np.mean(feature_list1, axis=0) |
|
std = np.std(feature_list1, axis=0) + 1e-10 |
|
feature_list1 = (feature_list1 - mean) / std |
|
feature_list2 = (feature_list2 - mean) / std |
|
|
|
dist = calculate_frechet_distance( |
|
mu1=np.mean(feature_list1, axis=0), |
|
sigma1=np.cov(feature_list1, rowvar=False), |
|
mu2=np.mean(feature_list2, axis=0), |
|
sigma2=np.cov(feature_list2, rowvar=False), |
|
) |
|
return dist |