MMM-Demo / train_vq.py
samadi10's picture
Added necessary files
eeaa83d
raw
history blame
7.39 kB
import os
import json
import torch
import torch.optim as optim
from torch.utils.tensorboard import SummaryWriter
import models.vqvae as vqvae
import utils.losses as losses
import options.option_vq as option_vq
import utils.utils_model as utils_model
from dataset import dataset_VQ, dataset_TM_eval
import utils.eval_trans as eval_trans
from options.get_eval_option import get_opt
from models.evaluator_wrapper import EvaluatorModelWrapper
import warnings
warnings.filterwarnings('ignore')
from utils.word_vectorizer import WordVectorizer
from tqdm import tqdm
from exit.utils import get_model, generate_src_mask, init_save_folder
from models.vqvae_sep import VQVAE_SEP
def update_lr_warm_up(optimizer, nb_iter, warm_up_iter, lr):
current_lr = lr * (nb_iter + 1) / (warm_up_iter + 1)
for param_group in optimizer.param_groups:
param_group["lr"] = current_lr
return optimizer, current_lr
##### ---- Exp dirs ---- #####
args = option_vq.get_args_parser()
torch.manual_seed(args.seed)
args.out_dir = os.path.join(args.out_dir, f'vq') # /{args.exp_name}
# os.makedirs(args.out_dir, exist_ok = True)
init_save_folder(args)
##### ---- Logger ---- #####
logger = utils_model.get_logger(args.out_dir)
writer = SummaryWriter(args.out_dir)
logger.info(json.dumps(vars(args), indent=4, sort_keys=True))
w_vectorizer = WordVectorizer('./glove', 'our_vab')
if args.dataname == 'kit' :
dataset_opt_path = 'checkpoints/kit/Comp_v6_KLD005/opt.txt'
args.nb_joints = 21
else :
dataset_opt_path = 'checkpoints/t2m/Comp_v6_KLD005/opt.txt'
args.nb_joints = 22
logger.info(f'Training on {args.dataname}, motions are with {args.nb_joints} joints')
wrapper_opt = get_opt(dataset_opt_path, torch.device('cuda'))
eval_wrapper = EvaluatorModelWrapper(wrapper_opt)
##### ---- Dataloader ---- #####
train_loader = dataset_VQ.DATALoader(args.dataname,
args.batch_size,
window_size=args.window_size,
unit_length=2**args.down_t)
train_loader_iter = dataset_VQ.cycle(train_loader)
val_loader = dataset_TM_eval.DATALoader(args.dataname, False,
32,
w_vectorizer,
unit_length=2**args.down_t)
##### ---- Network ---- #####
if args.sep_uplow:
net = VQVAE_SEP(args, ## use args to define different parameters in different quantizers
args.nb_code,
args.code_dim,
args.output_emb_width,
args.down_t,
args.stride_t,
args.width,
args.depth,
args.dilation_growth_rate,
args.vq_act,
args.vq_norm,
{'mean': torch.from_numpy(train_loader.dataset.mean).cuda().float(),
'std': torch.from_numpy(train_loader.dataset.std).cuda().float()},
True)
else:
net = vqvae.HumanVQVAE(args, ## use args to define different parameters in different quantizers
args.nb_code,
args.code_dim,
args.output_emb_width,
args.down_t,
args.stride_t,
args.width,
args.depth,
args.dilation_growth_rate,
args.vq_act,
args.vq_norm)
if args.resume_pth :
logger.info('loading checkpoint from {}'.format(args.resume_pth))
ckpt = torch.load(args.resume_pth, map_location='cpu')
net.load_state_dict(ckpt['net'], strict=True)
net.train()
net.cuda()
##### ---- Optimizer & Scheduler ---- #####
optimizer = optim.AdamW(net.parameters(), lr=args.lr, betas=(0.9, 0.99), weight_decay=args.weight_decay)
scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=args.lr_scheduler, gamma=args.gamma)
Loss = losses.ReConsLoss(args.recons_loss, args.nb_joints)
##### ------ warm-up ------- #####
avg_recons, avg_perplexity, avg_commit = 0., 0., 0.
for nb_iter in tqdm(range(1, args.warm_up_iter)):
optimizer, current_lr = update_lr_warm_up(optimizer, nb_iter, args.warm_up_iter, args.lr)
gt_motion = next(train_loader_iter)
gt_motion = gt_motion.cuda().float() # (bs, 64, dim)
pred_motion, loss_commit, perplexity = net(gt_motion)
loss_motion = Loss(pred_motion, gt_motion)
loss_vel = Loss.forward_joint(pred_motion, gt_motion)
loss = loss_motion + args.commit * loss_commit + args.loss_vel * loss_vel
optimizer.zero_grad()
loss.backward()
optimizer.step()
avg_recons += loss_motion.item()
avg_perplexity += perplexity.item()
avg_commit += loss_commit.item()
if nb_iter % args.print_iter == 0 :
avg_recons /= args.print_iter
avg_perplexity /= args.print_iter
avg_commit /= args.print_iter
logger.info(f"Warmup. Iter {nb_iter} : lr {current_lr:.5f} \t Commit. {avg_commit:.5f} \t PPL. {avg_perplexity:.2f} \t Recons. {avg_recons:.5f}")
avg_recons, avg_perplexity, avg_commit = 0., 0., 0.
##### ---- Training ---- #####
avg_recons, avg_perplexity, avg_commit = 0., 0., 0.
best_fid, best_iter, best_div, best_top1, best_top2, best_top3, best_matching, writer, logger = eval_trans.evaluation_vqvae(args.out_dir, val_loader, net, logger, writer, 0, best_fid=1000, best_iter=0, best_div=100, best_top1=0, best_top2=0, best_top3=0, best_matching=100, eval_wrapper=eval_wrapper)
for nb_iter in tqdm(range(1, args.total_iter + 1)):
gt_motion = next(train_loader_iter)
gt_motion = gt_motion.cuda().float() # bs, nb_joints, joints_dim, seq_len
if args.sep_uplow:
pred_motion, loss_commit, perplexity = net(gt_motion, idx_noise=0)
else:
pred_motion, loss_commit, perplexity = net(gt_motion)
loss_motion = Loss(pred_motion, gt_motion)
loss_vel = Loss.forward_joint(pred_motion, gt_motion)
loss = loss_motion + args.commit * loss_commit + args.loss_vel * loss_vel
optimizer.zero_grad()
loss.backward()
optimizer.step()
scheduler.step()
avg_recons += loss_motion.item()
avg_perplexity += perplexity.item()
avg_commit += loss_commit.item()
if nb_iter % args.print_iter == 0 :
avg_recons /= args.print_iter
avg_perplexity /= args.print_iter
avg_commit /= args.print_iter
writer.add_scalar('./Train/L1', avg_recons, nb_iter)
writer.add_scalar('./Train/PPL', avg_perplexity, nb_iter)
writer.add_scalar('./Train/Commit', avg_commit, nb_iter)
logger.info(f"Train. Iter {nb_iter} : \t Commit. {avg_commit:.5f} \t PPL. {avg_perplexity:.2f} \t Recons. {avg_recons:.5f}")
avg_recons, avg_perplexity, avg_commit = 0., 0., 0.,
if nb_iter % args.eval_iter==0 :
best_fid, best_iter, best_div, best_top1, best_top2, best_top3, best_matching, writer, logger = eval_trans.evaluation_vqvae(args.out_dir, val_loader, net, logger, writer, nb_iter, best_fid, best_iter, best_div, best_top1, best_top2, best_top3, best_matching, eval_wrapper=eval_wrapper)