MMM-Demo / dataset /dataset_tokenize.py
samadi10's picture
Added necessary files
eeaa83d
raw
history blame
4.35 kB
import torch
from torch.utils import data
import numpy as np
from os.path import join as pjoin
import random
import codecs as cs
from tqdm import tqdm
class VQMotionDataset(data.Dataset):
def __init__(self, dataset_name, feat_bias = 5, window_size = 64, unit_length = 8, fill_max_len=False):
self.window_size = window_size
self.unit_length = unit_length
self.feat_bias = feat_bias
self.fill_max_len = fill_max_len
self.dataset_name = dataset_name
min_motion_len = 40 if dataset_name =='t2m' else 24
if dataset_name == 't2m':
self.data_root = './dataset/HumanML3D'
self.motion_dir = pjoin(self.data_root, 'new_joint_vecs')
self.text_dir = pjoin(self.data_root, 'texts')
self.joints_num = 22
radius = 4
fps = 20
self.max_motion_length = 196
self.dim_pose = 263
self.meta_dir = 'checkpoints/t2m/VQVAEV3_CB1024_CMT_H1024_NRES3/meta'
#kinematic_chain = paramUtil.t2m_kinematic_chain
elif dataset_name == 'kit':
self.data_root = './dataset/KIT-ML'
self.motion_dir = pjoin(self.data_root, 'new_joint_vecs')
self.text_dir = pjoin(self.data_root, 'texts')
self.joints_num = 21
radius = 240 * 8
fps = 12.5
self.dim_pose = 251
self.max_motion_length = 196
self.meta_dir = 'checkpoints/kit/VQVAEV3_CB1024_CMT_H1024_NRES3/meta'
#kinematic_chain = paramUtil.kit_kinematic_chain
joints_num = self.joints_num
mean = np.load(pjoin(self.meta_dir, 'mean.npy'))
std = np.load(pjoin(self.meta_dir, 'std.npy'))
split_file = pjoin(self.data_root, 'train.txt')
data_dict = {}
id_list = []
with cs.open(split_file, 'r') as f:
for line in f.readlines():
id_list.append(line.strip())
new_name_list = []
length_list = []
for name in tqdm(id_list):
try:
motion = np.load(pjoin(self.motion_dir, name + '.npy'))
if (len(motion)) < min_motion_len or (len(motion) >= 200):
continue
data_dict[name] = {'motion': motion,
'length': len(motion),
'name': name}
new_name_list.append(name)
length_list.append(len(motion))
except:
# Some motion may not exist in KIT dataset
pass
self.mean = mean
self.std = std
self.length_arr = np.array(length_list)
self.data_dict = data_dict
self.name_list = new_name_list
def inv_transform(self, data):
return data * self.std + self.mean
def __len__(self):
return len(self.data_dict)
def __getitem__(self, item):
name = self.name_list[item]
data = self.data_dict[name]
motion, m_length = data['motion'], data['length']
m_length = (m_length // self.unit_length) * self.unit_length
idx = random.randint(0, len(motion) - m_length)
motion = motion[idx:idx+m_length]
if self.fill_max_len:
motion_zero = np.zeros((self.max_motion_length, self.dim_pose))
motion_zero[:m_length] = motion
motion = motion_zero
motion = (motion - self.mean) / self.std
return motion, m_length
"Z Normalization"
motion = (motion - self.mean) / self.std
return motion, name
def DATALoader(dataset_name,
batch_size = 1,
num_workers = 8, unit_length = 4, shuffle=True) :
train_loader = torch.utils.data.DataLoader(VQMotionDataset(dataset_name, unit_length=unit_length, fill_max_len=batch_size!=1),
batch_size,
shuffle=shuffle,
num_workers=num_workers,
#collate_fn=collate_fn,
drop_last = True)
return train_loader
def cycle(iterable):
while True:
for x in iterable:
yield x