|
import torch |
|
from torch.utils import data |
|
import numpy as np |
|
from os.path import join as pjoin |
|
import random |
|
import codecs as cs |
|
from tqdm import tqdm |
|
|
|
|
|
|
|
class VQMotionDataset(data.Dataset): |
|
def __init__(self, dataset_name, feat_bias = 5, window_size = 64, unit_length = 8, fill_max_len=False): |
|
self.window_size = window_size |
|
self.unit_length = unit_length |
|
self.feat_bias = feat_bias |
|
self.fill_max_len = fill_max_len |
|
|
|
self.dataset_name = dataset_name |
|
min_motion_len = 40 if dataset_name =='t2m' else 24 |
|
|
|
if dataset_name == 't2m': |
|
self.data_root = './dataset/HumanML3D' |
|
self.motion_dir = pjoin(self.data_root, 'new_joint_vecs') |
|
self.text_dir = pjoin(self.data_root, 'texts') |
|
self.joints_num = 22 |
|
radius = 4 |
|
fps = 20 |
|
self.max_motion_length = 196 |
|
self.dim_pose = 263 |
|
self.meta_dir = 'checkpoints/t2m/VQVAEV3_CB1024_CMT_H1024_NRES3/meta' |
|
|
|
elif dataset_name == 'kit': |
|
self.data_root = './dataset/KIT-ML' |
|
self.motion_dir = pjoin(self.data_root, 'new_joint_vecs') |
|
self.text_dir = pjoin(self.data_root, 'texts') |
|
self.joints_num = 21 |
|
radius = 240 * 8 |
|
fps = 12.5 |
|
self.dim_pose = 251 |
|
self.max_motion_length = 196 |
|
self.meta_dir = 'checkpoints/kit/VQVAEV3_CB1024_CMT_H1024_NRES3/meta' |
|
|
|
|
|
joints_num = self.joints_num |
|
|
|
mean = np.load(pjoin(self.meta_dir, 'mean.npy')) |
|
std = np.load(pjoin(self.meta_dir, 'std.npy')) |
|
|
|
split_file = pjoin(self.data_root, 'train.txt') |
|
|
|
data_dict = {} |
|
id_list = [] |
|
with cs.open(split_file, 'r') as f: |
|
for line in f.readlines(): |
|
id_list.append(line.strip()) |
|
|
|
new_name_list = [] |
|
length_list = [] |
|
for name in tqdm(id_list): |
|
try: |
|
motion = np.load(pjoin(self.motion_dir, name + '.npy')) |
|
if (len(motion)) < min_motion_len or (len(motion) >= 200): |
|
continue |
|
|
|
data_dict[name] = {'motion': motion, |
|
'length': len(motion), |
|
'name': name} |
|
new_name_list.append(name) |
|
length_list.append(len(motion)) |
|
except: |
|
|
|
pass |
|
|
|
|
|
self.mean = mean |
|
self.std = std |
|
self.length_arr = np.array(length_list) |
|
self.data_dict = data_dict |
|
self.name_list = new_name_list |
|
|
|
def inv_transform(self, data): |
|
return data * self.std + self.mean |
|
|
|
def __len__(self): |
|
return len(self.data_dict) |
|
|
|
def __getitem__(self, item): |
|
name = self.name_list[item] |
|
data = self.data_dict[name] |
|
motion, m_length = data['motion'], data['length'] |
|
|
|
m_length = (m_length // self.unit_length) * self.unit_length |
|
|
|
idx = random.randint(0, len(motion) - m_length) |
|
motion = motion[idx:idx+m_length] |
|
|
|
if self.fill_max_len: |
|
motion_zero = np.zeros((self.max_motion_length, self.dim_pose)) |
|
motion_zero[:m_length] = motion |
|
motion = motion_zero |
|
motion = (motion - self.mean) / self.std |
|
return motion, m_length |
|
|
|
"Z Normalization" |
|
motion = (motion - self.mean) / self.std |
|
|
|
return motion, name |
|
|
|
def DATALoader(dataset_name, |
|
batch_size = 1, |
|
num_workers = 8, unit_length = 4, shuffle=True) : |
|
|
|
train_loader = torch.utils.data.DataLoader(VQMotionDataset(dataset_name, unit_length=unit_length, fill_max_len=batch_size!=1), |
|
batch_size, |
|
shuffle=shuffle, |
|
num_workers=num_workers, |
|
|
|
drop_last = True) |
|
|
|
return train_loader |
|
|
|
def cycle(iterable): |
|
while True: |
|
for x in iterable: |
|
yield x |