|
import argparse |
|
import asyncio |
|
import functools |
|
import json |
|
import os |
|
from io import BytesIO |
|
|
|
import uvicorn |
|
from fastapi import FastAPI, Body, Request |
|
|
|
|
|
|
|
from utils.utils import add_arguments, print_arguments |
|
from sentence_transformers import SentenceTransformer, models |
|
|
|
from gensim.models import Word2Vec |
|
from gensim.utils import simple_preprocess |
|
import numpy as np |
|
|
|
|
|
|
|
os.environ['KMP_DUPLICATE_LIB_OK'] = 'True' |
|
|
|
|
|
parser = argparse.ArgumentParser(description=__doc__) |
|
add_arg = functools.partial(add_arguments, argparser=parser) |
|
|
|
|
|
add_arg("host", type=str, default="0.0.0.0", help="") |
|
add_arg("port", type=int, default=5000, help="") |
|
add_arg("model_path", type=str, default="BAAI/bge-small-en-v1.5", help="") |
|
add_arg("use_gpu", type=bool, default=False, help="") |
|
add_arg("num_workers", type=int, default=2, help="") |
|
|
|
|
|
|
|
args = parser.parse_args() |
|
print_arguments(args) |
|
|
|
|
|
|
|
|
|
def similarity_score(model, textA, textB): |
|
em_test = model.encode( |
|
[textA, textB], |
|
normalize_embeddings=True |
|
) |
|
return em_test[0] @ em_test[1].T |
|
|
|
|
|
|
|
|
|
if args.use_gpu: |
|
bge_model = SentenceTransformer(args.model_path, device="cuda", compute_type="float16", cache_folder=".") |
|
else: |
|
bge_model = SentenceTransformer(args.model_path, device='cpu', cache_folder=".") |
|
|
|
|
|
|
|
if args.use_gpu: |
|
model_name = 'sam2ai/sbert-tsdae' |
|
word_embedding_model = models.Transformer(model_name) |
|
pooling_model = models.Pooling(word_embedding_model.get_word_embedding_dimension(), 'cls') |
|
tsdae_model = SentenceTransformer( |
|
modules=[word_embedding_model, pooling_model], |
|
device="cuda", |
|
compute_type="float16", |
|
cache_folder="." |
|
) |
|
else: |
|
model_name = 'sam2ai/sbert-tsdae' |
|
word_embedding_model = models.Transformer(model_name) |
|
pooling_model = models.Pooling(word_embedding_model.get_word_embedding_dimension(), 'cls') |
|
tsdae_model = SentenceTransformer( |
|
modules=[word_embedding_model, pooling_model], |
|
device='cpu', |
|
cache_folder="." |
|
) |
|
|
|
|
|
|
|
|
|
def calculate_similarity(sentence1, sentence2): |
|
|
|
tokens1 = simple_preprocess(sentence1) |
|
tokens2 = simple_preprocess(sentence2) |
|
|
|
|
|
|
|
sentences = [tokens1, tokens2] |
|
model = Word2Vec(sentences, vector_size=100, window=5, min_count=1, sg=0) |
|
|
|
|
|
vector1 = np.mean([model.wv[token] for token in tokens1], axis=0) |
|
vector2 = np.mean([model.wv[token] for token in tokens2], axis=0) |
|
|
|
|
|
similarity = np.dot(vector1, vector2) / (np.linalg.norm(vector1) * np.linalg.norm(vector2)) |
|
return similarity |
|
|
|
|
|
|
|
app = FastAPI(title="embedding Inference") |
|
|
|
@app.get("/") |
|
async def index(request: Request): |
|
return {"detail": "API is Active !!"} |
|
|
|
@app.post("/bge_embed") |
|
async def api_bge_embed( |
|
text1: str = Body("text1", description="", embed=True), |
|
text2: str = Body("text2", description="", embed=True), |
|
): |
|
|
|
scores = similarity_score(bge_model, text1, text2) |
|
print(scores) |
|
scores = scores.tolist() |
|
|
|
ret = {"similarity score": scores, "status_code": 200} |
|
return ret |
|
|
|
@app.post("/tsdae_embed") |
|
async def api_tsdae_embed( |
|
text1: str = Body("text1", description="", embed=True), |
|
text2: str = Body("text2", description="", embed=True), |
|
): |
|
|
|
scores = similarity_score(tsdae_model, text1, text2) |
|
print(scores) |
|
scores = scores.tolist() |
|
|
|
ret = {"similarity score": scores, "status_code": 200} |
|
return ret |
|
|
|
@app.post("/w2v_embed") |
|
async def api_w2v_embed( |
|
text1: str = Body("text1", description="", embed=True), |
|
text2: str = Body("text2", description="", embed=True), |
|
): |
|
|
|
scores = calculate_similarity(text1, text2) |
|
print(scores) |
|
scores = scores.tolist() |
|
|
|
ret = {"similarity score": scores, "status_code": 200} |
|
return ret |
|
|
|
|
|
|
|
|
|
if __name__ == '__main__': |
|
uvicorn.run(app, host=args.host, port=args.port) |