|
from dataclasses import dataclass |
|
from typing import Optional |
|
|
|
import torch |
|
import torch.nn.functional as F |
|
from torch import nn |
|
|
|
from sf3d.models.utils import BaseModule |
|
|
|
|
|
class GEGLU(nn.Module): |
|
r""" |
|
A variant of the gated linear unit activation function from https://arxiv.org/abs/2002.05202. |
|
|
|
Parameters: |
|
dim_in (`int`): The number of channels in the input. |
|
dim_out (`int`): The number of channels in the output. |
|
""" |
|
|
|
def __init__(self, dim_in: int, dim_out: int): |
|
super().__init__() |
|
self.proj = nn.Linear(dim_in, dim_out * 2) |
|
|
|
def gelu(self, gate: torch.Tensor) -> torch.Tensor: |
|
if gate.device.type != "mps": |
|
return F.gelu(gate) |
|
|
|
return F.gelu(gate.to(dtype=torch.float32)).to(dtype=gate.dtype) |
|
|
|
def forward(self, hidden_states, scale: float = 1.0): |
|
args = () |
|
hidden_states, gate = self.proj(hidden_states, *args).chunk(2, dim=-1) |
|
return hidden_states * self.gelu(gate) |
|
|
|
|
|
class CrossAttention(nn.Module): |
|
def __init__( |
|
self, |
|
dim, |
|
kv_dim=None, |
|
num_heads=16, |
|
qkv_bias=False, |
|
attn_drop=0.0, |
|
proj_drop=0.0, |
|
): |
|
super().__init__() |
|
self.num_heads = num_heads |
|
head_dim = dim // num_heads |
|
self.scale = head_dim**-0.5 |
|
kv_dim = dim if not kv_dim else kv_dim |
|
self.wq = nn.Linear(dim, dim, bias=qkv_bias) |
|
self.wk = nn.Linear(kv_dim, dim, bias=qkv_bias) |
|
self.wv = nn.Linear(kv_dim, dim, bias=qkv_bias) |
|
self.attn_drop = attn_drop |
|
self.proj = nn.Linear(dim, dim) |
|
self.proj_drop = nn.Dropout(proj_drop) |
|
|
|
def forward(self, x_q, x_kv): |
|
B, N_q, C = x_q.shape |
|
B, N_kv, _ = x_kv.shape |
|
|
|
q = self.wq(x_q).reshape(B, N_q, self.num_heads, C // self.num_heads) |
|
|
|
k = self.wk(x_kv).reshape(B, N_kv, self.num_heads, C // self.num_heads) |
|
v = self.wv(x_kv).reshape(B, N_kv, self.num_heads, C // self.num_heads) |
|
|
|
|
|
x = torch.nn.functional.scaled_dot_product_attention( |
|
q.permute(0, 2, 1, 3), |
|
k.permute(0, 2, 1, 3), |
|
v.permute(0, 2, 1, 3), |
|
attn_mask=None, |
|
dropout_p=self.attn_drop, |
|
scale=self.scale, |
|
).permute(0, 2, 1, 3) |
|
|
|
|
|
x = x.reshape(B, N_q, C) |
|
x = self.proj(x) |
|
x = self.proj_drop(x) |
|
return x |
|
|
|
|
|
class FeedForward(nn.Module): |
|
def __init__( |
|
self, |
|
dim: int, |
|
dim_out: Optional[int] = None, |
|
mult: int = 4, |
|
dropout: float = 0.0, |
|
): |
|
super().__init__() |
|
inner_dim = int(dim * mult) |
|
dim_out = dim_out if dim_out is not None else dim |
|
act_fn = GEGLU(dim, inner_dim) |
|
self.net = nn.ModuleList([]) |
|
self.net.append(act_fn) |
|
self.net.append(nn.Dropout(dropout)) |
|
self.net.append(nn.Linear(inner_dim, dim_out)) |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
for module in self.net: |
|
x = module(x) |
|
return x |
|
|
|
|
|
class BasicBlock(nn.Module): |
|
def __init__( |
|
self, |
|
dim: int, |
|
kv_dim: Optional[int] = None, |
|
num_heads: int = 16, |
|
qkv_bias: bool = False, |
|
attn_drop: float = 0.0, |
|
proj_drop: float = 0.0, |
|
ff_drop: float = 0.0, |
|
): |
|
super().__init__() |
|
self.norm1 = nn.LayerNorm(dim) |
|
self.attn1 = CrossAttention( |
|
dim, |
|
kv_dim=dim, |
|
num_heads=num_heads, |
|
qkv_bias=qkv_bias, |
|
attn_drop=attn_drop, |
|
proj_drop=proj_drop, |
|
) |
|
self.norm2 = nn.LayerNorm(dim) |
|
self.attn2 = CrossAttention( |
|
dim, |
|
kv_dim=kv_dim, |
|
num_heads=num_heads, |
|
qkv_bias=qkv_bias, |
|
attn_drop=attn_drop, |
|
proj_drop=proj_drop, |
|
) |
|
self.norm3 = nn.LayerNorm(dim) |
|
self.ff = FeedForward(dim, dropout=ff_drop) |
|
|
|
def forward(self, z, x): |
|
z_norm = self.norm1(z) |
|
z = z + self.attn1(z_norm, z_norm) |
|
|
|
z_norm = self.norm2(z) |
|
z = z + self.attn2(z_norm, x if x is not None else z_norm) |
|
z_norm = self.norm3(z) |
|
z = z + self.ff(z_norm) |
|
return z |
|
|
|
|
|
class SingleStreamTransformer(BaseModule): |
|
@dataclass |
|
class Config(BaseModule.Config): |
|
num_attention_heads: int = 16 |
|
attention_head_dim: int = 88 |
|
in_channels: Optional[int] = None |
|
out_channels: Optional[int] = None |
|
num_layers: int = 16 |
|
dropout: float = 0.0 |
|
norm_num_groups: int = 32 |
|
cross_attention_dim: Optional[int] = None |
|
attention_bias: bool = False |
|
|
|
cfg: Config |
|
|
|
def configure(self) -> None: |
|
self.num_attention_heads = self.cfg.num_attention_heads |
|
self.attention_head_dim = self.cfg.attention_head_dim |
|
inner_dim = self.num_attention_heads * self.attention_head_dim |
|
|
|
|
|
self.norm = torch.nn.GroupNorm( |
|
num_groups=self.cfg.norm_num_groups, |
|
num_channels=self.cfg.in_channels, |
|
eps=1e-6, |
|
affine=True, |
|
) |
|
self.proj_in = nn.Linear(self.cfg.in_channels, inner_dim) |
|
|
|
|
|
self.transformer_blocks = nn.ModuleList( |
|
[ |
|
BasicBlock( |
|
inner_dim, |
|
kv_dim=self.cfg.cross_attention_dim, |
|
num_heads=self.num_attention_heads, |
|
qkv_bias=self.cfg.attention_bias, |
|
proj_drop=self.cfg.dropout, |
|
ff_drop=self.cfg.dropout, |
|
) |
|
for d in range(self.cfg.num_layers) |
|
] |
|
) |
|
|
|
|
|
self.proj_out = nn.Linear(inner_dim, self.cfg.in_channels) |
|
|
|
def forward(self, hidden_states, encoder_hidden_states=None, **kwargs): |
|
residual = hidden_states |
|
hidden_states = self.norm(hidden_states) |
|
hidden_states = hidden_states.permute(0, 2, 1) |
|
hidden_states = self.proj_in(hidden_states) |
|
for block in self.transformer_blocks: |
|
hidden_states = block(hidden_states, encoder_hidden_states) |
|
hidden_states = self.proj_out(hidden_states).permute(0, 2, 1).contiguous() |
|
|
|
hidden_states = hidden_states + residual |
|
return hidden_states |
|
|
|
|
|
class FuseBlock(nn.Module): |
|
""" |
|
Fuse X in to Z with cross attention |
|
""" |
|
|
|
def __init__( |
|
self, |
|
dim_z: int, |
|
dim_x: int, |
|
num_heads: int = 16, |
|
qkv_bias: bool = False, |
|
attn_drop: float = 0.0, |
|
proj_drop: float = 0.0, |
|
ff_drop: float = 0.0, |
|
norm_x_input: bool = True, |
|
): |
|
super().__init__() |
|
self.norm_x_input = norm_x_input |
|
if self.norm_x_input: |
|
self.norm_x = nn.LayerNorm(dim_x) |
|
self.attn = CrossAttention( |
|
dim_z, |
|
kv_dim=dim_x, |
|
num_heads=num_heads, |
|
qkv_bias=qkv_bias, |
|
attn_drop=attn_drop, |
|
proj_drop=proj_drop, |
|
) |
|
self.norm_z1 = nn.LayerNorm(dim_z) |
|
self.norm_z2 = nn.LayerNorm(dim_z) |
|
self.ff = FeedForward(dim_z, dropout=ff_drop) |
|
|
|
def forward(self, z, x): |
|
|
|
z = z + self.attn(self.norm_z1(z), self.norm_x(x) if self.norm_x_input else x) |
|
z = z + self.ff(self.norm_z2(z)) |
|
return z |
|
|
|
|
|
@torch.no_grad() |
|
def get_triplane_attention_mask(res): |
|
N = 3 * res * res |
|
attn_mask = torch.zeros(3, res, res, 3, res, res) |
|
|
|
i, j = torch.meshgrid(torch.arange(res), torch.arange(res)) |
|
|
|
attn_mask[0, i, j, 1, i, :] = 1.0 |
|
attn_mask[0, i, j, 2, j, :] = 1.0 |
|
attn_mask[1, i, j, 0, i, :] = 1.0 |
|
attn_mask[1, i, j, 2, :, j] = 1.0 |
|
attn_mask[2, i, j, 0, :, i] = 1.0 |
|
attn_mask[2, i, j, 1, :, j] = 1.0 |
|
attn_mask = attn_mask.bool() |
|
|
|
attn_bias = torch.empty_like(attn_mask, dtype=torch.float) |
|
attn_bias.masked_fill_(attn_mask, 0.0) |
|
attn_bias.masked_fill_(~attn_mask, float("-inf")) |
|
|
|
return attn_bias.reshape(N, N) |
|
|
|
|
|
class TriplaneAttention(nn.Module): |
|
def __init__( |
|
self, |
|
dim: int, |
|
resolution: int, |
|
num_heads: int = 16, |
|
qkv_bias: bool = False, |
|
attn_drop: float = 0.0, |
|
proj_drop: float = 0.0, |
|
full_attention: bool = False, |
|
): |
|
super().__init__() |
|
self.num_heads = num_heads |
|
head_dim = dim // num_heads |
|
self.scale = head_dim**-0.5 |
|
self.wq = nn.Linear(dim, dim, bias=qkv_bias) |
|
self.wk = nn.Linear(dim, dim, bias=qkv_bias) |
|
self.wv = nn.Linear(dim, dim, bias=qkv_bias) |
|
self.attn_drop = attn_drop |
|
self.proj = nn.Linear(dim, dim) |
|
self.proj_drop = nn.Dropout(proj_drop) |
|
|
|
self.resolution = resolution |
|
self.full_attention = full_attention |
|
self.attn_mask = ( |
|
get_triplane_attention_mask(resolution) if not full_attention else None |
|
) |
|
|
|
def forward(self, x): |
|
B, N, C = x.shape |
|
|
|
q = self.wq(x).reshape(B, N, self.num_heads, C // self.num_heads) |
|
k = self.wk(x).reshape(B, N, self.num_heads, C // self.num_heads) |
|
v = self.wv(x).reshape(B, N, self.num_heads, C // self.num_heads) |
|
|
|
|
|
assert N == self.resolution**2 * 3 |
|
attn_bias = ( |
|
self.attn_mask.to(q) |
|
.unsqueeze(0) |
|
.unsqueeze(0) |
|
.expand(B, self.num_heads, -1, -1) |
|
if not self.full_attention |
|
else None |
|
) |
|
|
|
|
|
x = torch.nn.functional.scaled_dot_product_attention( |
|
q.permute(0, 2, 1, 3), |
|
k.permute(0, 2, 1, 3), |
|
v.permute(0, 2, 1, 3), |
|
attn_mask=attn_bias, |
|
dropout_p=self.attn_drop, |
|
scale=self.scale, |
|
).permute(0, 2, 1, 3) |
|
|
|
|
|
x = x.reshape(B, N, C) |
|
x = self.proj(x) |
|
x = self.proj_drop(x) |
|
return x |
|
|
|
|
|
class TwoStreamBlock(nn.Module): |
|
def __init__( |
|
self, |
|
dim_latent: int, |
|
dim_input: int, |
|
num_basic_blocks: int = 4, |
|
num_heads: int = 16, |
|
qkv_bias: bool = False, |
|
attn_drop: float = 0.0, |
|
proj_drop: float = 0.0, |
|
ff_drop: float = 0.0, |
|
norm_x_input: bool = True, |
|
dim_cross: Optional[int] = None, |
|
): |
|
super().__init__() |
|
|
|
|
|
self.fuse_block_in = FuseBlock( |
|
dim_latent, |
|
dim_input, |
|
num_heads=num_heads, |
|
qkv_bias=qkv_bias, |
|
attn_drop=attn_drop, |
|
proj_drop=proj_drop, |
|
ff_drop=ff_drop, |
|
norm_x_input=norm_x_input, |
|
) |
|
|
|
|
|
self.transformer_block = nn.ModuleList( |
|
[ |
|
BasicBlock( |
|
dim_latent, |
|
kv_dim=dim_cross, |
|
num_heads=num_heads, |
|
qkv_bias=qkv_bias, |
|
proj_drop=proj_drop, |
|
ff_drop=ff_drop, |
|
) |
|
for _ in range(num_basic_blocks) |
|
] |
|
) |
|
|
|
|
|
self.fuse_block_out = FuseBlock( |
|
dim_input, |
|
dim_latent, |
|
num_heads=num_heads, |
|
qkv_bias=qkv_bias, |
|
attn_drop=attn_drop, |
|
proj_drop=proj_drop, |
|
ff_drop=ff_drop, |
|
norm_x_input=norm_x_input, |
|
) |
|
|
|
def forward(self, latent, input, cross_input): |
|
latent = self.fuse_block_in(latent, input) |
|
for block in self.transformer_block: |
|
latent = block(latent, cross_input) |
|
input = self.fuse_block_out(input, latent) |
|
return latent, input |
|
|
|
|
|
class TwoStreamInterleaveTransformer(BaseModule): |
|
@dataclass |
|
class Config(BaseModule.Config): |
|
num_attention_heads: int = 16 |
|
attention_head_dim: int = 64 |
|
raw_triplane_channels: int = 1024 |
|
triplane_channels: int = 1024 |
|
raw_image_channels: int = 1024 |
|
num_latents: int = 1792 |
|
num_blocks: int = 4 |
|
num_basic_blocks: int = 3 |
|
dropout: float = 0.0 |
|
latent_init_std: float = 0.02 |
|
norm_num_groups: int = 32 |
|
attention_bias: bool = False |
|
norm_x_input: bool = False |
|
cross_attention_dim: int = 1024 |
|
mix_latent: bool = True |
|
|
|
cfg: Config |
|
|
|
def configure(self) -> None: |
|
self.mix_latent = self.cfg.mix_latent |
|
|
|
|
|
self.num_attention_heads = self.cfg.num_attention_heads |
|
self.attention_head_dim = self.cfg.attention_head_dim |
|
self.num_latents = self.cfg.num_latents |
|
self.latent_dim = self.num_attention_heads * self.attention_head_dim |
|
|
|
|
|
if self.cfg.norm_num_groups > 0: |
|
self.norm_triplane = torch.nn.GroupNorm( |
|
num_groups=self.cfg.norm_num_groups, |
|
num_channels=self.cfg.raw_triplane_channels, |
|
eps=1e-6, |
|
affine=True, |
|
) |
|
else: |
|
self.norm_triplane = nn.LayerNorm(self.cfg.raw_triplane_channels) |
|
self.proj_triplane = nn.Linear( |
|
self.cfg.raw_triplane_channels, self.cfg.triplane_channels |
|
) |
|
if self.mix_latent: |
|
self.norm_image = nn.LayerNorm(self.cfg.raw_image_channels) |
|
self.proj_image = nn.Linear(self.cfg.raw_image_channels, self.latent_dim) |
|
self.norm_latent = nn.LayerNorm(self.latent_dim) |
|
self.proj_latent = nn.Linear(self.latent_dim, self.latent_dim) |
|
|
|
|
|
self.latent_init = nn.Parameter( |
|
torch.zeros(1, self.num_latents, self.latent_dim) |
|
) |
|
nn.init.normal_(self.latent_init, std=self.cfg.latent_init_std) |
|
|
|
|
|
self.main_blocks = nn.ModuleList( |
|
[ |
|
TwoStreamBlock( |
|
self.latent_dim, |
|
self.cfg.triplane_channels, |
|
num_basic_blocks=self.cfg.num_basic_blocks, |
|
num_heads=self.num_attention_heads, |
|
qkv_bias=self.cfg.attention_bias, |
|
proj_drop=self.cfg.dropout, |
|
ff_drop=self.cfg.dropout, |
|
norm_x_input=self.cfg.norm_x_input, |
|
dim_cross=self.cfg.cross_attention_dim, |
|
) |
|
for _ in range(self.cfg.num_blocks) |
|
] |
|
) |
|
|
|
|
|
self.proj_out = nn.Linear( |
|
self.cfg.triplane_channels, self.cfg.raw_triplane_channels |
|
) |
|
|
|
def forward(self, hidden_states, encoder_hidden_states, **kwargs): |
|
|
|
|
|
if isinstance(self.norm_triplane, nn.GroupNorm): |
|
triplane_tokens = self.norm_triplane(hidden_states) |
|
triplane_tokens = triplane_tokens.permute( |
|
0, 2, 1 |
|
) |
|
elif isinstance(self.norm_triplane, nn.LayerNorm): |
|
triplane_tokens = self.norm_triplane(hidden_states.permute(0, 2, 1)) |
|
else: |
|
raise ValueError("Unknown normalization layer") |
|
triplane_tokens = self.proj_triplane(triplane_tokens) |
|
if self.mix_latent: |
|
image_tokens = self.norm_image( |
|
encoder_hidden_states |
|
) |
|
image_tokens = self.proj_image(image_tokens) |
|
init_latents = self.latent_init.expand( |
|
hidden_states.shape[0], -1, -1 |
|
) |
|
init_latents = self.norm_latent(init_latents) |
|
init_latents = self.proj_latent(init_latents) |
|
if self.mix_latent: |
|
latent_tokens = torch.cat( |
|
[image_tokens, init_latents], dim=1 |
|
) |
|
else: |
|
latent_tokens = init_latents |
|
|
|
|
|
for block in self.main_blocks: |
|
latent_tokens, triplane_tokens = block( |
|
latent_tokens, triplane_tokens, encoder_hidden_states |
|
) |
|
|
|
|
|
triplane_tokens = self.proj_out(triplane_tokens).permute(0, 2, 1).contiguous() |
|
triplane_tokens = triplane_tokens + hidden_states |
|
return triplane_tokens |
|
|