sella / app.py
salsabilapl's picture
Update app.py
5c2e636 verified
raw
history blame
655 Bytes
from statsmodels.tsa.statespace.varmax import VARMAX
import matplotlib.pyplot as plt
import statsmodels.api as sm
import pandas as pd
import numpy as np
import warnings
warnings.filterwarnings('ignore')
import streamlit as st
import joblib
fitted_model = joblib.load('modelling_all123.sav')
predict=fitted_model.get_prediction(start=1401,end=1430, dynamic=True)
predictions=predict.predicted_mean
predictions
predictions['Harga Bawang']=predictions['Harga Bawang'].round()
predictions.columns=['Prediction Harga Bawang',
'Prediction T2M',
'Prediction WS10M_RANGE',
'Prediction PRECTOTCORR']
predictions=predictions.abs()
predictions