salomonsky commited on
Commit
9c9643c
1 Parent(s): 5b1ae10

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +83 -64
app.py CHANGED
@@ -12,80 +12,99 @@ import random
12
  from huggingface_hub import hf_hub_download
13
  import spaces
14
 
 
 
 
 
 
 
15
  pipe = StableVideoDiffusionPipeline.from_pretrained("vdo/stable-video-diffusion-img2vid-xt-1-1", torch_dtype=torch.float16, variant="fp16")
16
  pipe.to("cpu")
17
- max_64_bit_int = 2**63 - 1
18
- @spaces.GPU(duration=120)
19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20
  def sample(
21
- image: Image,
22
- seed: Optional[int] = 42,
23
- randomize_seed: bool = True,
24
- motion_bucket_id: int = 127,
25
- fps_id: int = 6,
26
- version: str = "svd_xt",
27
- cond_aug: float = 0.02,
28
- decoding_t: int = 3,
29
- device: str = "cuda",
30
- output_folder: str = "outputs",
31
  ):
32
- if image.mode == "RGBA":
33
- image = image.convert("RGB")
34
-
35
- if(randomize_seed):
36
- seed = random.randint(0, max_64_bit_int)
37
- generator = torch.manual_seed(seed)
38
 
39
- os.makedirs(output_folder, exist_ok=True)
40
- base_count = len(glob(os.path.join(output_folder, "*.mp4")))
41
- video_path = os.path.join(output_folder, f"{base_count:06d}.mp4")
42
 
43
- frames = pipe(image, decode_chunk_size=decoding_t, generator=generator, motion_bucket_id=motion_bucket_id, noise_aug_strength=0.1, num_frames=25).frames[0]
44
- export_to_video(frames, video_path, fps=fps_id)
45
- torch.manual_seed(seed)
46
 
47
- return video_path, frames, seed
48
 
49
- def resize_image(image, output_size=(1024, 576)):
50
- target_aspect = output_size[0] / output_size[1]
51
- image_aspect = image.width / image.height
52
-
53
- if image_aspect > target_aspect:
54
- new_height = output_size[1]
55
- new_width = int(new_height * image_aspect)
56
- resized_image = image.resize((new_width, new_height), Image.LANCZOS)
57
- left = (new_width - output_size[0]) / 2
58
- top = 0
59
- right = (new_width + output_size[0]) / 2
60
- bottom = output_size[1]
61
- else:
62
- new_width = output_size[0]
63
- new_height = int(new_width / image_aspect)
64
- resized_image = image.resize((new_width, new_height), Image.LANCZOS)
65
- left = 0
66
- top = (new_height - output_size[1]) / 2
67
- right = output_size[0]
68
- bottom = (new_height + output_size[1]) / 2
69
-
70
- cropped_image = resized_image.crop((left, top, right, bottom))
71
- return cropped_image
72
 
73
  with gr.Blocks() as demo:
74
- with gr.Row():
75
- with gr.Column():
76
- image = gr.Image(label="Upload your image", type="pil")
77
- with gr.Accordion("Advanced options", open=False):
78
- seed = gr.Slider(label="Seed", value=42, randomize=True, minimum=0, maximum=max_64_bit_int, step=1)
79
- randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
80
- motion_bucket_id = gr.Slider(label="Motion bucket id", info="Controls how much motion to add/remove from the image", value=127, minimum=1, maximum=255)
81
- fps_id = gr.Slider(label="Frames per second", info="The length of your video in seconds will be 25/fps", value=6, minimum=5, maximum=30)
82
- generate_btn = gr.Button(value="Animate", variant="primary")
83
- with gr.Column():
84
- video = gr.Video(label="Generated video")
85
- gallery = gr.Gallery(label="Generated frames")
86
-
87
- image.upload(fn=resize_image, inputs=image, outputs=image, queue=False)
88
- generate_btn.click(fn=sample, inputs=[image, seed, randomize_seed, motion_bucket_id, fps_id], outputs=[video, gallery, seed], api_name="video")
 
89
 
90
  if __name__ == "__main__":
91
- demo.launch(share=True, show_api=False)
 
12
  from huggingface_hub import hf_hub_download
13
  import spaces
14
 
15
+
16
+ MAX_64_BIT_INT = 2**63 - 1
17
+ DEFAULT_SEED = 42
18
+ DEFAULT_OUTPUT_FOLDER = "outputs"
19
+
20
+
21
  pipe = StableVideoDiffusionPipeline.from_pretrained("vdo/stable-video-diffusion-img2vid-xt-1-1", torch_dtype=torch.float16, variant="fp16")
22
  pipe.to("cpu")
 
 
23
 
24
+
25
+ def resize_image(image, output_size=(1024, 576)):
26
+ target_aspect = output_size[0] / output_size[1]
27
+ image_aspect = image.width / image.height
28
+
29
+ if image_aspect > target_aspect:
30
+ new_height = output_size[1]
31
+ new_width = int(new_height * image_aspect)
32
+ resized_image = image.resize((new_width, new_height), Image.LANCZOS)
33
+ left = (new_width - output_size[0]) / 2
34
+ top = 0
35
+ right = (new_width + output_size[0]) / 2
36
+ bottom = output_size[1]
37
+ else:
38
+ new_width = output_size[0]
39
+ new_height = int(new_width / image_aspect)
40
+ resized_image = image.resize((new_width, new_height), Image.LANCZOS)
41
+ left = 0
42
+ top = (new_height - output_size[1]) / 2
43
+ right = output_size[0]
44
+ bottom = (new_height + output_size[1]) / 2
45
+
46
+ cropped_image = resized_image.crop((left, top, right, bottom))
47
+ return cropped_image
48
+
49
+
50
+ def generate_video(image, seed, motion_bucket_id, fps_id):
51
+ if image.mode == "RGBA":
52
+ image = image.convert("RGB")
53
+
54
+ generator = torch.manual_seed(seed)
55
+ frames = pipe(image, decode_chunk_size=3, generator=generator, motion_bucket_id=motion_bucket_id, noise_aug_strength=0.1, num_frames=25).frames[0]
56
+ return frames
57
+
58
+
59
+ def export_video(frames, video_path, fps_id):
60
+ export_to_video(frames, video_path, fps=fps_id)
61
+
62
+
63
+ @spaces.GPU(duration=120)
64
  def sample(
65
+ image,
66
+ seed=DEFAULT_SEED,
67
+ randomize_seed=True,
68
+ motion_bucket_id=127,
69
+ fps_id=6,
70
+ version="svd_xt",
71
+ cond_aug=0.02,
72
+ decoding_t=3,
73
+ device="cuda",
74
+ output_folder=DEFAULT_OUTPUT_FOLDER,
75
  ):
76
+ if randomize_seed:
77
+ seed = random.randint(0, MAX_64_BIT_INT)
78
+ generator = torch.manual_seed(seed)
 
 
 
79
 
80
+ os.makedirs(output_folder, exist_ok=True)
81
+ base_count = len(glob(os.path.join(output_folder, "*.mp4")))
82
+ video_path = os.path.join(output_folder, f"{base_count:06d}.mp4")
83
 
84
+ frames = generate_video(image, seed, motion_bucket_id, fps_id)
85
+ export_video(frames, video_path, fps_id)
86
+ torch.manual_seed(seed)
87
 
88
+ return video_path, frames, seed
89
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
90
 
91
  with gr.Blocks() as demo:
92
+ with gr.Row():
93
+ with gr.Column():
94
+ image = gr.Image(label="Upload your image", type="pil")
95
+ with gr.Accordion("Advanced options", open=False):
96
+ seed = gr.Slider(label="Seed", value=DEFAULT_SEED, randomize=True, minimum=0, maximum=MAX_64_BIT_INT, step=1)
97
+ randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
98
+ motion_bucket_id = gr.Slider(label="Motion bucket id", info="Controls how much motion to add/remove from the image", value=127, minimum=1, maximum=255)
99
+ fps_id = gr.Slider(label="Frames per second", info="The length of your video in seconds will be 25/fps", value=6, minimum=5, maximum=30)
100
+ generate_btn = gr.Button(value="Animate", variant="primary")
101
+ with gr.Column():
102
+ video = gr.Video(label="Generated video")
103
+ gallery = gr.Gallery(label="Generated frames")
104
+
105
+ image.upload(fn=resize_image, inputs=image, outputs=image, queue=False)
106
+ generate_btn.click(fn=sample, inputs=[image, seed, randomize_seed, motion_bucket_id, fps_id], outputs=[video, gallery, seed], api_name="video")
107
+
108
 
109
  if __name__ == "__main__":
110
+ demo.launch(share=True, show_api=False)