Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -92,13 +92,13 @@ class ModelWrapper:
|
|
92 |
|
93 |
noise = noise.to(torch.float32)
|
94 |
print(f'noise: {noise.dtype}')
|
95 |
-
prompt_embed = prompt_embed.to(torch.
|
96 |
DTYPE = prompt_embed.dtype
|
97 |
print(f'prompt_embed: {DTYPE}')
|
98 |
|
99 |
for constant in all_timesteps:
|
100 |
current_timesteps = torch.ones(len(prompt_embed), device="cuda", dtype=torch.long) * constant
|
101 |
-
current_timesteps = current_timesteps.to(torch.float32)
|
102 |
print(f'current_timestpes: {current_timesteps.dtype}')
|
103 |
eval_images = self.model(noise, current_timesteps, prompt_embed, added_cond_kwargs=unet_added_conditions).sample
|
104 |
print(eval_images.dtype)
|
@@ -140,7 +140,7 @@ class ModelWrapper:
|
|
140 |
)
|
141 |
|
142 |
unet_added_conditions = {
|
143 |
-
"time_ids": add_time_ids
|
144 |
"text_embeds": batch_pooled_prompt_embeds.squeeze(1)
|
145 |
}
|
146 |
|
|
|
92 |
|
93 |
noise = noise.to(torch.float32)
|
94 |
print(f'noise: {noise.dtype}')
|
95 |
+
prompt_embed = prompt_embed.to(torch.float16)
|
96 |
DTYPE = prompt_embed.dtype
|
97 |
print(f'prompt_embed: {DTYPE}')
|
98 |
|
99 |
for constant in all_timesteps:
|
100 |
current_timesteps = torch.ones(len(prompt_embed), device="cuda", dtype=torch.long) * constant
|
101 |
+
#current_timesteps = current_timesteps.to(torch.float32)
|
102 |
print(f'current_timestpes: {current_timesteps.dtype}')
|
103 |
eval_images = self.model(noise, current_timesteps, prompt_embed, added_cond_kwargs=unet_added_conditions).sample
|
104 |
print(eval_images.dtype)
|
|
|
140 |
)
|
141 |
|
142 |
unet_added_conditions = {
|
143 |
+
"time_ids": add_time_ids,
|
144 |
"text_embeds": batch_pooled_prompt_embeds.squeeze(1)
|
145 |
}
|
146 |
|