Spaces:
Runtime error
Runtime error
salomonsky
commited on
Commit
•
3c2650c
1
Parent(s):
38ad96d
Update app.py
Browse files
app.py
CHANGED
@@ -11,7 +11,7 @@ from PIL import Image
|
|
11 |
|
12 |
translator = Translator()
|
13 |
HF_TOKEN = os.environ.get("HF_TOKEN", None)
|
14 |
-
basemodel = "
|
15 |
MAX_SEED = np.iinfo(np.int32).max
|
16 |
|
17 |
CSS = """
|
@@ -27,12 +27,11 @@ JS = """function () {
|
|
27 |
}
|
28 |
}"""
|
29 |
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
)
|
36 |
|
37 |
async def generate_image(
|
38 |
prompt:str,
|
@@ -42,7 +41,8 @@ async def generate_image(
|
|
42 |
height:int=1024,
|
43 |
scales:float=3.5,
|
44 |
steps:int=24,
|
45 |
-
seed:int=-1
|
|
|
46 |
|
47 |
if seed == -1:
|
48 |
seed = random.randint(0, MAX_SEED)
|
@@ -66,6 +66,42 @@ async def generate_image(
|
|
66 |
|
67 |
return image, seed
|
68 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
async def gen(
|
70 |
prompt:str,
|
71 |
lora_add:str="",
|
@@ -75,20 +111,31 @@ async def gen(
|
|
75 |
scales:float=3.5,
|
76 |
steps:int=24,
|
77 |
seed:int=-1,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
progress=gr.Progress(track_tqdm=True)
|
79 |
):
|
80 |
model = enable_lora(lora_add)
|
81 |
print(model)
|
82 |
-
image, seed = await generate_image(prompt,model,lora_word,width,height,scales,steps,seed)
|
83 |
-
|
84 |
-
|
|
|
85 |
with gr.Blocks(css=CSS, js=JS, theme="Nymbo/Nymbo_Theme") as demo:
|
86 |
gr.HTML("<h1><center>Flux Lab Light</center></h1>")
|
87 |
gr.HTML("<p><center>Powered By HF Inference API</center></p>")
|
88 |
with gr.Row():
|
89 |
with gr.Column(scale=4):
|
90 |
with gr.Row():
|
91 |
-
img = gr.Image(type="filepath", label='
|
|
|
92 |
with gr.Row():
|
93 |
prompt = gr.Textbox(label='Enter Your Prompt (Multi-Languages)', placeholder="Enter prompt...", scale=6)
|
94 |
sendBtn = gr.Button(scale=1, variant='primary')
|
@@ -133,7 +180,7 @@ with gr.Blocks(css=CSS, js=JS, theme="Nymbo/Nymbo_Theme") as demo:
|
|
133 |
label="Add Flux LoRA",
|
134 |
info="Copy the HF LoRA model name here",
|
135 |
lines=1,
|
136 |
-
|
137 |
)
|
138 |
lora_word = gr.Textbox(
|
139 |
label="Add Flux LoRA Trigger Word",
|
@@ -141,6 +188,71 @@ with gr.Blocks(css=CSS, js=JS, theme="Nymbo/Nymbo_Theme") as demo:
|
|
141 |
lines=1,
|
142 |
value="",
|
143 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
144 |
|
145 |
gr.on(
|
146 |
triggers=[
|
@@ -156,9 +268,18 @@ with gr.Blocks(css=CSS, js=JS, theme="Nymbo/Nymbo_Theme") as demo:
|
|
156 |
height,
|
157 |
scales,
|
158 |
steps,
|
159 |
-
seed
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
160 |
],
|
161 |
-
outputs=[img, seed]
|
162 |
)
|
163 |
|
164 |
if __name__ == "__main__":
|
|
|
11 |
|
12 |
translator = Translator()
|
13 |
HF_TOKEN = os.environ.get("HF_TOKEN", None)
|
14 |
+
basemodel = "XLabs-AI/flux-RealismLora"
|
15 |
MAX_SEED = np.iinfo(np.int32).max
|
16 |
|
17 |
CSS = """
|
|
|
27 |
}
|
28 |
}"""
|
29 |
|
30 |
+
def enable_lora(lora_add):
|
31 |
+
if not lora_add:
|
32 |
+
return basemodel
|
33 |
+
else:
|
34 |
+
return lora_add
|
|
|
35 |
|
36 |
async def generate_image(
|
37 |
prompt:str,
|
|
|
41 |
height:int=1024,
|
42 |
scales:float=3.5,
|
43 |
steps:int=24,
|
44 |
+
seed:int=-1
|
45 |
+
):
|
46 |
|
47 |
if seed == -1:
|
48 |
seed = random.randint(0, MAX_SEED)
|
|
|
66 |
|
67 |
return image, seed
|
68 |
|
69 |
+
async def upscale_image(
|
70 |
+
prompt:str,
|
71 |
+
img_path:str,
|
72 |
+
upscale_factor:int=2,
|
73 |
+
controlnet_scale:float=0.6,
|
74 |
+
controlnet_decay:float=1,
|
75 |
+
condition_scale:int=6,
|
76 |
+
tile_width:int=112,
|
77 |
+
tile_height:int=144,
|
78 |
+
denoise_strength:float=0.35,
|
79 |
+
num_inference_steps:int=18,
|
80 |
+
solver:str="DDIM"
|
81 |
+
):
|
82 |
+
client = AsyncInferenceClient()
|
83 |
+
try:
|
84 |
+
result = await client.image_to_image(
|
85 |
+
prompt=prompt,
|
86 |
+
input_image=img_path,
|
87 |
+
negative_prompt="",
|
88 |
+
seed=42,
|
89 |
+
upscale_factor=upscale_factor,
|
90 |
+
controlnet_scale=controlnet_scale,
|
91 |
+
controlnet_decay=controlnet_decay,
|
92 |
+
condition_scale=condition_scale,
|
93 |
+
tile_width=tile_width,
|
94 |
+
tile_height=tile_height,
|
95 |
+
denoise_strength=denoise_strength,
|
96 |
+
num_inference_steps=num_inference_steps,
|
97 |
+
solver=solver,
|
98 |
+
model="finegrain/finegrain-image-enhancer",
|
99 |
+
)
|
100 |
+
except Exception as e:
|
101 |
+
raise gr.Error(f"Error in {e}")
|
102 |
+
|
103 |
+
return result[0]
|
104 |
+
|
105 |
async def gen(
|
106 |
prompt:str,
|
107 |
lora_add:str="",
|
|
|
111 |
scales:float=3.5,
|
112 |
steps:int=24,
|
113 |
seed:int=-1,
|
114 |
+
upscale_factor:int=2,
|
115 |
+
controlnet_scale:float=0.6,
|
116 |
+
controlnet_decay:float=1,
|
117 |
+
condition_scale:int=6,
|
118 |
+
tile_width:int=112,
|
119 |
+
tile_height:int=144,
|
120 |
+
denoise_strength:float=0.35,
|
121 |
+
num_inference_steps:int=18,
|
122 |
+
solver:str="DDIM",
|
123 |
progress=gr.Progress(track_tqdm=True)
|
124 |
):
|
125 |
model = enable_lora(lora_add)
|
126 |
print(model)
|
127 |
+
image, seed = await generate_image(prompt, model, lora_word, width, height, scales, steps, seed)
|
128 |
+
upscale_img = await upscale_image(prompt, image, upscale_factor, controlnet_scale, controlnet_decay, condition_scale, tile_width, tile_height, denoise_strength, num_inference_steps, solver)
|
129 |
+
return image, upscale_img, seed
|
130 |
+
|
131 |
with gr.Blocks(css=CSS, js=JS, theme="Nymbo/Nymbo_Theme") as demo:
|
132 |
gr.HTML("<h1><center>Flux Lab Light</center></h1>")
|
133 |
gr.HTML("<p><center>Powered By HF Inference API</center></p>")
|
134 |
with gr.Row():
|
135 |
with gr.Column(scale=4):
|
136 |
with gr.Row():
|
137 |
+
img = gr.Image(type="filepath", label='Flux Image', height=600)
|
138 |
+
upscale_img = gr.Image(type="filepath", label='Upscale Image', height=600)
|
139 |
with gr.Row():
|
140 |
prompt = gr.Textbox(label='Enter Your Prompt (Multi-Languages)', placeholder="Enter prompt...", scale=6)
|
141 |
sendBtn = gr.Button(scale=1, variant='primary')
|
|
|
180 |
label="Add Flux LoRA",
|
181 |
info="Copy the HF LoRA model name here",
|
182 |
lines=1,
|
183 |
+
value="XLabs-AI/flux-RealismLora"
|
184 |
)
|
185 |
lora_word = gr.Textbox(
|
186 |
label="Add Flux LoRA Trigger Word",
|
|
|
188 |
lines=1,
|
189 |
value="",
|
190 |
)
|
191 |
+
upscale_factor = gr.Radio(
|
192 |
+
label="UpScale Factor",
|
193 |
+
choices=[
|
194 |
+
2, 3, 4
|
195 |
+
],
|
196 |
+
value=2,
|
197 |
+
scale=2
|
198 |
+
)
|
199 |
+
controlnet_scale = gr.Slider(
|
200 |
+
label="ControlNet Scale",
|
201 |
+
minimum=0.1,
|
202 |
+
maximum=1.0,
|
203 |
+
step=0.1,
|
204 |
+
value=0.6
|
205 |
+
)
|
206 |
+
controlnet_decay = gr.Slider(
|
207 |
+
label="ControlNet Decay",
|
208 |
+
minimum=0.1,
|
209 |
+
maximum=1.0,
|
210 |
+
step=0.1,
|
211 |
+
value=1
|
212 |
+
)
|
213 |
+
condition_scale = gr.Slider(
|
214 |
+
label="Condition Scale",
|
215 |
+
minimum=1,
|
216 |
+
maximum=10,
|
217 |
+
step=1,
|
218 |
+
value=6
|
219 |
+
)
|
220 |
+
tile_width = gr.Slider(
|
221 |
+
label="Tile Width",
|
222 |
+
minimum=64,
|
223 |
+
maximum=256,
|
224 |
+
step=16,
|
225 |
+
value=112
|
226 |
+
)
|
227 |
+
tile_height = gr.Slider(
|
228 |
+
label="Tile Height",
|
229 |
+
minimum=64,
|
230 |
+
maximum=256,
|
231 |
+
step=16,
|
232 |
+
value=144
|
233 |
+
)
|
234 |
+
denoise_strength = gr.Slider(
|
235 |
+
label="Denoise Strength",
|
236 |
+
minimum=0.1,
|
237 |
+
maximum=1.0,
|
238 |
+
step=0.1,
|
239 |
+
value=0.35
|
240 |
+
)
|
241 |
+
num_inference_steps = gr.Slider(
|
242 |
+
label="Num Inference Steps",
|
243 |
+
minimum=1,
|
244 |
+
maximum=50,
|
245 |
+
step=1,
|
246 |
+
value=18
|
247 |
+
)
|
248 |
+
solver = gr.Radio(
|
249 |
+
label="Solver",
|
250 |
+
choices=[
|
251 |
+
"DDIM", "DPM"
|
252 |
+
],
|
253 |
+
value="DDIM",
|
254 |
+
scale=2
|
255 |
+
)
|
256 |
|
257 |
gr.on(
|
258 |
triggers=[
|
|
|
268 |
height,
|
269 |
scales,
|
270 |
steps,
|
271 |
+
seed,
|
272 |
+
upscale_factor,
|
273 |
+
controlnet_scale,
|
274 |
+
controlnet_decay,
|
275 |
+
condition_scale,
|
276 |
+
tile_width,
|
277 |
+
tile_height,
|
278 |
+
denoise_strength,
|
279 |
+
num_inference_steps,
|
280 |
+
solver
|
281 |
],
|
282 |
+
outputs=[img, upscale_img, seed]
|
283 |
)
|
284 |
|
285 |
if __name__ == "__main__":
|