flux3 / app.py
salomonsky's picture
Update app.py
5cc4c89 verified
raw
history blame
6.08 kB
import os
import gradio as gr
import numpy as np
import random
from huggingface_hub import AsyncInferenceClient, InferenceClient
from PIL import Image
from gradio_client import Client, handle_file
from gradio_imageslider import ImageSlider
MAX_SEED = np.iinfo(np.int32).max
HF_TOKEN = os.environ.get("HF_TOKEN")
HF_TOKEN_UPSCALER = os.environ.get("HF_TOKEN_UPSCALER")
client = AsyncInferenceClient()
llm_client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
def enable_lora(lora_add, basemodel):
return basemodel if not lora_add else lora_add
async def generate_image(prompt, model, lora_word, width, height, scales, steps, seed):
try:
if seed == -1:
seed = random.randint(0, MAX_SEED)
seed = int(seed)
text = prompt + "," + lora_word
image = await client.text_to_image(prompt=text, height=height, width=width, guidance_scale=scales, num_inference_steps=steps, model=model)
return image, seed
except Exception as e:
return f"Error al generar imagen: {e}", None
def get_upscale_finegrain(prompt, img_path, upscale_factor):
try:
client = Client("finegrain/finegrain-image-enhancer", hf_token=HF_TOKEN_UPSCALER)
result = client.predict(input_image=handle_file(img_path), prompt=prompt, negative_prompt="", seed=42, upscale_factor=upscale_factor, controlnet_scale=0.6, controlnet_decay=1, condition_scale=6, tile_width=112, tile_height=144, denoise_strength=0.35, num_inference_steps=18, solver="DDIM", api_name="/process")
return result[1]
except Exception as e:
return None
async def gen(prompt, basemodel, width, height, scales, steps, seed, upscale_factor, process_upscale, lora_model, process_lora):
try:
model = enable_lora(lora_model, basemodel) if process_lora else basemodel
improved_prompt = await improve_prompt(prompt)
combined_prompt = f"{prompt} {improved_prompt}"
image, seed = await generate_image(combined_prompt, model, "", width, height, scales, steps, seed)
if isinstance(image, str) and image.startswith("Error"):
return [image, None]
image_path = "temp_image.jpg"
image.save(image_path, format="JPEG")
if process_upscale:
upscale_image_path = get_upscale_finegrain(combined_prompt, image_path, upscale_factor)
if upscale_image_path is not None:
upscale_image = Image.open(upscale_image_path)
upscale_image.save("upscale_image.jpg", format="JPEG")
return [image_path, "upscale_image.jpg"]
else:
return [image_path, image_path]
else:
return [image_path, image_path]
except Exception as e:
return [f"Error: {e}", None]
def error_handler(err):
return f"Error: {err}"
async def improve_prompt(prompt):
try:
instruction = "improve this idea and describe in English a detailed img2vid prompt in a single paragraph of up to 200 characters, developing atmosphere, characters, lighting, and cameras."
formatted_prompt = f"{prompt}: {instruction}"
response = llm_client.text_generation(formatted_prompt, max_new_tokens=200)
improved_text = response['generated_text'].strip() if 'generated_text' in response else response.strip()
return improved_text
except Exception as e:
return f"Error mejorando el prompt: {e}"
css = """
#col-container{ margin: 0 auto; max-width: 1024px;}
"""
with gr.Blocks(css=css, theme="Nymbo/Nymbo_Theme") as demo:
with gr.Column(elem_id="col-container"):
with gr.Row():
with gr.Column(scale=3):
output_res = ImageSlider(label="Flux / Upscaled")
with gr.Column(scale=2):
prompt = gr.Textbox(label="Descripción de imágen")
basemodel_choice = gr.Dropdown(label="Modelo", choices=["black-forest-labs/FLUX.1-schnell", "black-forest-labs/FLUX.1-DEV"], value="black-forest-labs/FLUX.1-schnell")
lora_model_choice = gr.Dropdown(label="LORA Realismo", choices=["Shakker-Labs/FLUX.1-dev-LoRA-add-details", "XLabs-AI/flux-RealismLora"], value="XLabs-AI/flux-RealismLora")
with gr.Row():
process_lora = gr.Checkbox(label="Procesar LORA")
process_upscale = gr.Checkbox(label="Procesar Escalador")
improved_prompt = gr.Textbox(label="Prompt Mejorado", interactive=False)
improve_btn = gr.Button("Mejora mi prompt")
improve_btn.click(fn=lambda prompt: improve_prompt(prompt), inputs=[prompt], outputs=[improved_prompt, prompt])
reset_btn = gr.Button("Reset")
reset_btn.click(fn=lambda: [prompt.update(""), improved_prompt.update("")], inputs=None, outputs=[prompt, improved_prompt])
with gr.Accordion(label="Opciones Avanzadas", open=False):
width = gr.Slider(label="Ancho", minimum=512, maximum=1280, step=8, value=1280)
height = gr.Slider(label="Alto", minimum=512, maximum=1280, step=8, value=768)
upscale_factor = gr.Radio(label="Factor de Escala", choices=[2, 4, 8], value=2)
scales = gr.Slider(label="Escalado", minimum=1, maximum=20, step=1, value=10)
steps = gr.Slider(label="Pasos", minimum=1, maximum=100, step=1, value=20)
seed = gr.Number(label="Semilla", value=-1)
reset_advanced = gr.Button("Reset")
reset_advanced.click(fn=lambda: [width.update(1280), height.update(768), scales.update(10), steps.update(20), seed.update(-1)], inputs=None, outputs=[width, height, scales, steps, seed])
btn = gr.Button("Generar")
btn.click(fn=gen, inputs=[prompt, basemodel_choice, width, height, scales, steps, seed, upscale_factor, process_upscale, lora_model_choice, process_lora], outputs=[output_res])
demo.launch()