SANDRAMSC commited on
Commit
d246db2
Β·
1 Parent(s): a2f7f2f

Added streamlit app

Browse files
frontend/LICENSE DELETED
@@ -1,21 +0,0 @@
1
- MIT License
2
-
3
- Copyright (c) 2024 Leopoldo Miranda
4
-
5
- Permission is hereby granted, free of charge, to any person obtaining a copy
6
- of this software and associated documentation files (the "Software"), to deal
7
- in the Software without restriction, including without limitation the rights
8
- to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
- copies of the Software, and to permit persons to whom the Software is
10
- furnished to do so, subject to the following conditions:
11
-
12
- The above copyright notice and this permission notice shall be included in all
13
- copies or substantial portions of the Software.
14
-
15
- THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
- IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
- FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
- AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
- LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
- OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21
- SOFTWARE.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
frontend/src/assets/cube-leg.png DELETED
Binary file (18.2 kB)
 
frontend/src/assets/growth.png DELETED
Binary file (19.1 kB)
 
frontend/src/assets/icon.png DELETED
Binary file (24.1 kB)
 
frontend/src/assets/pilot.png DELETED
Binary file (34.7 kB)
 
frontend/src/assets/reflecting.png DELETED
Binary file (19.9 kB)
 
frontend/src/assets/rocket-svgrepo-com.svg:Zone.Identifier ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ [ZoneTransfer]
2
+ ZoneId=3
3
+ ReferrerUrl=https://www.svgrepo.com/svg/275999/rocket
4
+ HostUrl=https://www.svgrepo.com/download/275999/rocket.svg
frontend/src/assets/rocket.svg.svg ADDED
frontend/src/components/Features.tsx CHANGED
@@ -1,4 +1,4 @@
1
- import { Badge } from "./ui/badge";
2
  import {
3
  Card,
4
  CardTitle,
@@ -6,7 +6,7 @@ import {
6
  CardHeader,
7
  } from "@/components/ui/card";
8
  import image4 from "../assets/looking-ahead.png";
9
-
10
 
11
  interface FeatureProps {
12
  title: string;
@@ -66,6 +66,9 @@ export const Features = () => {
66
  alt="About feature"
67
  className="w-[150px] lg:w-[300px] mx-auto"
68
  />
 
 
 
69
  </CardFooter>
70
  </Card>
71
  ))}
 
1
+ import { Badge } from "./ui/badge";
2
  import {
3
  Card,
4
  CardTitle,
 
6
  CardHeader,
7
  } from "@/components/ui/card";
8
  import image4 from "../assets/looking-ahead.png";
9
+ //import { Upload } from "./upload";
10
 
11
  interface FeatureProps {
12
  title: string;
 
66
  alt="About feature"
67
  className="w-[150px] lg:w-[300px] mx-auto"
68
  />
69
+ {/* Upload sections */}
70
+
71
+
72
  </CardFooter>
73
  </Card>
74
  ))}
frontend/src/components/Navbar.tsx CHANGED
@@ -1,4 +1,6 @@
1
  import { useState } from "react";
 
 
2
  import {
3
  NavigationMenu,
4
  NavigationMenuItem,
@@ -11,8 +13,6 @@ import {
11
  SheetTitle,
12
  SheetTrigger,
13
  } from "@/components/ui/sheet";
14
- import { GitHubLogoIcon } from "@radix-ui/react-icons";
15
- import { buttonVariants } from "./ui/button";
16
  import { Menu } from "lucide-react";
17
  import { ModeToggle } from "./mode-toggle";
18
  import { LogoIcon } from "./Icons";
@@ -73,26 +73,10 @@ export const Navbar = () => {
73
  </SheetTitle>
74
  </SheetHeader>
75
  <nav className="flex flex-col justify-center items-center gap-2 mt-4">
76
- {routeList.map(({ href, label }: RouteProps) => (
77
- <a
78
- key={label}
79
- href={href}
80
- onClick={() => setIsOpen(false)}
81
- className={buttonVariants({ variant: "ghost" })}
82
- >
83
- {label}
84
- </a>
85
- ))}
86
- <a
87
- href="#"
88
- target="_blank"
89
- className={`w-[110px] border ${buttonVariants({
90
- variant: "secondary",
91
- })}`}
92
- >
93
- <GitHubLogoIcon className="mr-0 w-14 h-5" />
94
- Join Waitlist
95
- </a>
96
  </nav>
97
  </SheetContent>
98
  </Sheet>
@@ -114,15 +98,10 @@ export const Navbar = () => {
114
  </nav>
115
 
116
  <div className="hidden md:flex gap-2">
117
- <a
118
- href="https://github.com/leoMirandaa/shadcn-landing-page.git"
119
- target="_blank"
120
- className={`border ${buttonVariants({ variant: "secondary" })}`}
121
- >
122
- <GitHubLogoIcon className="mr-0 w-8 h-5" />
123
- Join Waitlist
124
- </a>
125
-
126
  <ModeToggle />
127
  </div>
128
  </NavigationMenuList>
 
1
  import { useState } from "react";
2
+ import { Button } from "./ui/button";
3
+ import { buttonVariants } from "./ui/button";
4
  import {
5
  NavigationMenu,
6
  NavigationMenuItem,
 
13
  SheetTitle,
14
  SheetTrigger,
15
  } from "@/components/ui/sheet";
 
 
16
  import { Menu } from "lucide-react";
17
  import { ModeToggle } from "./mode-toggle";
18
  import { LogoIcon } from "./Icons";
 
73
  </SheetTitle>
74
  </SheetHeader>
75
  <nav className="flex flex-col justify-center items-center gap-2 mt-4">
76
+ <a>
77
+ <Button className="w-full md:w-2/3">Join Waitlist</Button>
78
+ </a>
79
+
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
80
  </nav>
81
  </SheetContent>
82
  </Sheet>
 
98
  </nav>
99
 
100
  <div className="hidden md:flex gap-2">
101
+ <a>
102
+ <Button className="w-full ">Join Waitlist
103
+ </Button>
104
+ </a>
 
 
 
 
 
105
  <ModeToggle />
106
  </div>
107
  </NavigationMenuList>
frontend/src/components/upload/.streamlit/config.toml ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ [theme]
2
+ primaryColor="#F63366"
3
+ backgroundColor="#FFFFFF"
4
+ secondaryBackgroundColor="#F0F2F6"
5
+ textColor="#262730"
6
+ font="sans serif"
frontend/src/components/upload/app-v1.py ADDED
@@ -0,0 +1,46 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ from langchain.llms import OpenAI
3
+ from langchain.text_splitter import CharacterTextSplitter
4
+ from langchain.embeddings import OpenAIEmbeddings
5
+ from langchain.vectorstores import Chroma
6
+ from langchain.chains import RetrievalQA
7
+
8
+ def generate_response(uploaded_file, openai_api_key, query_text):
9
+ # Load document if file is uploaded
10
+ if uploaded_file is not None:
11
+ documents = [uploaded_file.read().decode()]
12
+ # Split documents into chunks
13
+ text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
14
+ texts = text_splitter.create_documents(documents)
15
+ # Select embeddings
16
+ embeddings = OpenAIEmbeddings(openai_api_key=openai_api_key)
17
+ # Create a vectorstore from documents
18
+ db = Chroma.from_documents(texts, embeddings)
19
+ # Create retriever interface
20
+ retriever = db.as_retriever()
21
+ # Create QA chain
22
+ qa = RetrievalQA.from_chain_type(llm=OpenAI(openai_api_key=openai_api_key), chain_type='stuff', retriever=retriever)
23
+ return qa.run(query_text)
24
+
25
+ # Page title
26
+ st.set_page_config(page_title='πŸ¦œπŸ”— Ask the Doc App')
27
+ st.title('πŸ¦œπŸ”— Ask the Doc App')
28
+
29
+ # File upload
30
+ uploaded_file = st.file_uploader('Upload an article', type='txt')
31
+ # Query text
32
+ query_text = st.text_input('Enter your question:', placeholder = 'Please provide a short summary.', disabled=not uploaded_file)
33
+
34
+ # Form input and query
35
+ result = []
36
+ with st.form('myform', clear_on_submit=True):
37
+ openai_api_key = st.text_input('OpenAI API Key', type='password', disabled=not (uploaded_file and query_text))
38
+ submitted = st.form_submit_button('Submit', disabled=not(uploaded_file and query_text))
39
+ if submitted and openai_api_key.startswith('sk-'):
40
+ with st.spinner('Calculating...'):
41
+ response = generate_response(uploaded_file, openai_api_key, query_text)
42
+ result.append(response)
43
+ del openai_api_key
44
+
45
+ if len(result):
46
+ st.info(response)
frontend/src/components/upload/requirements.txt ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ streamlit
2
+ langchain
3
+ openai
4
+ chromadb
5
+ tiktoken
frontend/src/components/upload/streamlit_app.py ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ from langchain.llms import OpenAI
3
+ from langchain.text_splitter import CharacterTextSplitter
4
+ from langchain.embeddings import OpenAIEmbeddings
5
+ from langchain.vectorstores import Chroma
6
+ from langchain.chains import RetrievalQA
7
+
8
+ def generate_response(uploaded_file, openai_api_key, query_text):
9
+ # Load document if file is uploaded
10
+ if uploaded_file is not None:
11
+ documents = [uploaded_file.read().decode()]
12
+ # Split documents into chunks
13
+ text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
14
+ texts = text_splitter.create_documents(documents)
15
+ # Select embeddings
16
+ embeddings = OpenAIEmbeddings(openai_api_key=openai_api_key)
17
+ # Create a vectorstore from documents
18
+ db = Chroma.from_documents(texts, embeddings)
19
+ # Create retriever interface
20
+ retriever = db.as_retriever()
21
+ # Create QA chain
22
+ qa = RetrievalQA.from_chain_type(llm=OpenAI(openai_api_key=openai_api_key), chain_type='stuff', retriever=retriever)
23
+ return qa.run(query_text)
24
+
25
+
26
+ # Page title
27
+ st.set_page_config(page_title='πŸ¦œπŸ”— Ask the Doc App')
28
+ st.title('πŸ¦œπŸ”— Ask the Doc App')
29
+
30
+ # File upload
31
+ uploaded_file = st.file_uploader('Upload an article', type='txt')
32
+ # Query text
33
+ query_text = st.text_input('Enter your question:', placeholder = 'Please provide a short summary.', disabled=not uploaded_file)
34
+
35
+ # Form input and query
36
+ result = []
37
+ with st.form('myform', clear_on_submit=True):
38
+ openai_api_key = st.text_input('OpenAI API Key', type='password', disabled=not (uploaded_file and query_text))
39
+ submitted = st.form_submit_button('Submit', disabled=not(uploaded_file and query_text))
40
+ if submitted and openai_api_key.startswith('sk-'):
41
+ with st.spinner('Calculating...'):
42
+ response = generate_response(uploaded_file, openai_api_key, query_text)
43
+ result.append(response)
44
+ del openai_api_key
45
+
46
+ if len(result):
47
+ st.info(response)