Spaces:
Sleeping
Sleeping
import os | |
import argparse | |
import json | |
import openai | |
from dotenv import load_dotenv | |
from langchain_community.document_loaders import TextLoader | |
from langchain_community.document_loaders import UnstructuredPDFLoader | |
from langchain_community.embeddings.fake import FakeEmbeddings | |
from langchain_text_splitters import RecursiveCharacterTextSplitter | |
from langchain_community.vectorstores import Vectara | |
from schema import Metadata, BimDiscipline | |
load_dotenv() | |
vectara_customer_id = os.environ['VECTARA_CUSTOMER_ID'] | |
vectara_corpus_id = os.environ['VECTARA_CORPUS_ID'] | |
vectara_api_key = os.environ['VECTARA_API_KEY'] | |
vectorstore = Vectara(vectara_customer_id=vectara_customer_id, | |
vectara_corpus_id=vectara_corpus_id, | |
vectara_api_key=vectara_api_key) | |
def ingest(file_path): | |
extension = file_path.split('.')[-1] | |
ext = extension.lower() | |
if ext == 'pdf': | |
loader = UnstructuredPDFLoader(file_path) | |
elif ext == 'txt': | |
loader = TextLoader(file_path) | |
else: | |
raise NotImplementedError('Only .txt or .pdf files are supported') | |
# transform locally | |
documents = loader.load() | |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=0, | |
separators=[ | |
"\n\n", | |
"\n", | |
" ", | |
",", | |
"\uff0c", # Fullwidth comma | |
"\u3001", # Ideographic comma | |
"\uff0e", # Fullwidth full stop | |
# "\u200B", # Zero-width space (Asian languages) | |
# "\u3002", # Ideographic full stop (Asian languages) | |
"", | |
]) | |
docs = text_splitter.split_documents(documents) | |
#print(docs) | |
return docs | |
# vectara = Vectara.from_documents(docs, embedding=FakeEmbeddings(size=768)) | |
# retriever = vectara.as_retriever() | |
# return retriever | |
def extract_metadata(docs): | |
# plain text | |
context = "".join( | |
[doc.page_content.replace('\n\n','').replace('..','') for doc in docs]) | |
# Create client | |
client = openai.OpenAI( | |
base_url="https://api.together.xyz/v1", | |
api_key=os.environ["TOGETHER_API_KEY"], | |
) | |
# Call the LLM with the JSON schema | |
chat_completion = client.chat.completions.create( | |
model="mistralai/Mixtral-8x7B-Instruct-v0.1", | |
response_format={"type": "json_object", "schema": Metadata.model_json_schema()}, | |
messages=[ | |
{ | |
"role": "system", | |
"content": f"You are a helpful assistant that understands BIM documents and engineering disciplines. Your answer should be in JSON format and only include the title, a brief one-sentence summary, and the discipline the document belongs to, distinguishing between {[d.value for d in BimDiscipline]} based on the given document." | |
}, | |
{ | |
"role": "user", | |
"content": f"Analyze the provided document, which could be in either German or English. Extract the title, summarize it briefly in one sentence, and infer the discipline. Document:\n{context}" | |
} | |
] | |
) | |
created_user = json.loads(chat_completion.choices[0].message.content) | |
return created_user | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser(description="Generate metadata for a BIM document") | |
parser.add_argument("document", metavar="FILEPATH", type=str, | |
help="Path to the BIM document") | |
args = parser.parse_args() | |
if not os.path.exists(args.document) or not os.path.isfile(args.document): | |
print("File '{}' not found or not accessible.".format(args.document)) | |
sys.exit(-1) | |
docs = ingest(args.document) | |
metadata = extract_metadata(docs) | |
print(json.dumps(metadata, indent=2)) |