Spaces:
Runtime error
Runtime error
import gradio as gr | |
import requests | |
import json | |
from transformers import AutoTokenizer, TFAutoModelForSeq2SeqLM | |
import os | |
def get_api(): | |
api_key = os.getenv("NYT_ARTICLE_API") | |
if api_key is None: | |
raise ValueError("NYT_ARTICLE_API environment variable not set.") | |
return api_key | |
def get_abstracts(query): | |
api_key = get_api() | |
url = f'https://api.nytimes.com/svc/search/v2/articlesearch.json?q={query}&fq=source:("The New York Times")&api-key={api_key}' | |
response = requests.get(url).json() | |
abstracts = [] | |
docs = response.get('response', {}).get('docs', []) | |
for doc in docs: | |
abstract = doc.get('abstract', '') | |
if abstract: | |
abstracts.append(abstract) | |
return abstracts | |
def summarizer(query): | |
abstracts = get_abstracts(query) | |
input_text = ' '.join(abstracts) | |
tokenizer = AutoTokenizer.from_pretrained("stevhliu/my_awesome_billsum_model") | |
inputs = tokenizer(input_text, return_tensors="tf").input_ids | |
model = TFAutoModelForSeq2SeqLM.from_pretrained("stevhliu/my_awesome_billsum_model", from_pt=True) | |
outputs = model.generate(inputs, max_length=100, do_sample=False) | |
summary = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
return abstracts, summary | |
iface = gr.Interface( | |
fn=summarizer, | |
inputs=gr.inputs.Textbox(placeholder="Enter your query"), | |
outputs=[ | |
gr.outputs.Textbox(label="Abstracts"), | |
gr.outputs.Textbox(label="Summary") | |
], | |
title="New York Times Articles Summarizer", | |
description="This summarizer actually does not yet summarize New York Times articles because of certain limitations. Type in something like 'Manipur' or 'Novak Djokovic' you will get a summary of that topic. What actually happens is that the query goes through the API. The abstract of article's content is added or concatenated, and then a text of considerable length is generated. That text is then summarized. So, this is an article summarizer but summarizes only abstracts of a particular article, ensuring that readers get the essence of a topic. This is a successful implementation of a pretrained T5 Transformer model." | |
) | |
if __name__ == "__main__": | |
iface.launch() | |