saklee commited on
Commit
7918249
·
1 Parent(s): e9b3630

Delete app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -39
app.py DELETED
@@ -1,39 +0,0 @@
1
- import torch
2
- import re
3
- import gradio as gr
4
- from gradio.components import Image, Textbox
5
- from transformers import AutoTokenizer, ViTImageProcessor, VisionEncoderDecoderModel
6
-
7
- device=torch.device("cuda" if torch.cuda.is_available() else "cpu")
8
- local_path = "/app/model/nlpconnect_vit-gpt2-image-captioning/"
9
- feature_extractor = ViTImageProcessor.from_pretrained(local_path)
10
- tokenizer = AutoTokenizer.from_pretrained(local_path)
11
- model = VisionEncoderDecoderModel.from_pretrained(local_path).to(device)
12
-
13
- gen_kwargs = {"max_length": 128, "num_beams": 8}
14
- def predict(image):
15
- image = image.convert('RGB')
16
- image = feature_extractor(image, return_tensors="pt").pixel_values.to(device)
17
- clean_text = lambda x: x.replace('<|endoftext|>','').split('\n')[0]
18
- caption_ids = model.generate(image, **gen_kwargs)[0]
19
- caption_text = clean_text(tokenizer.decode(caption_ids))
20
- return caption_text
21
-
22
-
23
- _input = Image(label="Upload any Image", type = 'pil')
24
- _output = Textbox(type="text",label="Captions")
25
- examples = [f"example{i}.jpg" for i in range(1,7)]
26
-
27
- title = "Image Captioning "
28
- description = "Made by : 炼丹侠"
29
- iface = gr.Interface(
30
-
31
- fn=predict,
32
- description=description,
33
- inputs=_input,
34
- outputs=_output,
35
- title=title,
36
- examples = examples
37
- )
38
- gr.close_all() #关闭所有正在运行的端口
39
- iface.launch(server_name="0.0.0.0", server_port=7860, debug=True)