|
import streamlit as st |
|
import pandas as pd |
|
import numpy as np |
|
import re |
|
from datetime import datetime |
|
import subprocess |
|
from fairseq.models.transformer import TransformerModel |
|
time_interval=0 |
|
st.title('Knowledge Distillation in Neural Machine Translation') |
|
title = st.text_input('English Text', 'I welcome you to the demonstration.') |
|
|
|
if st.button('En-Hi Teacher'): |
|
time_1 = datetime.now() |
|
|
|
file1 = open("translation/input-files/flores/eng.devtest","w") |
|
file1.write(title) |
|
file1.close() |
|
subprocess.run('cd translation && bash -i translate-en-hi.sh && cd ..', shell=True) |
|
time_2 = datetime.now() |
|
time_interval = time_2 - time_1 |
|
file1 = open("translation/output-translation/flores/test-flores.hi","r") |
|
st.write('Hindi Translation: ',file1.read()) |
|
|
|
file1.close() |
|
st.write('Inference Time: ',time_interval) |
|
|
|
if st.button('En-Hi Student'): |
|
|
|
|
|
time_1 = datetime.now() |
|
zh2en = TransformerModel.from_pretrained('Student_en_hi/out_distill/tokenized.en-hi/', checkpoint_file='../../checkpoint_use.pt',bpe='subword_nmt', bpe_codes='/home/sakharam/RnD/translation/en-hi/bpe-codes/codes.en',tokenizer='moses') |
|
time_2 = datetime.now() |
|
time_interval = time_2 - time_1 |
|
st.write('Hindi Translation: ',zh2en.translate([title.lower()])[0]) |
|
st.write('Inference Time: ',time_interval) |
|
|