Spaces:
Sleeping
Sleeping
#!/usr/bin/env python | |
import os | |
from threading import Thread | |
from queue import Queue, Empty | |
from typing import Iterator | |
import gradio as gr | |
import spaces | |
import torch | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
DESCRIPTION = "# wasser" | |
DESCRIPTION += "\n<p>現在の環境に合わせて最適化されています。</p>" | |
MAX_MAX_NEW_TOKENS = 2048 | |
DEFAULT_MAX_NEW_TOKENS = 1024 | |
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "32768")) | |
model_id = "sakaltcommunity/wasser-4b" | |
if torch.cuda.is_available(): | |
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype="auto", device_map="auto") | |
else: | |
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float32) | |
model.eval() | |
tokenizer = AutoTokenizer.from_pretrained(model_id) | |
def apply_chat_template(conversation: list[dict[str, str]]) -> str: | |
prompt = "\n".join([f"{c['role']}: {c['content']}" for c in conversation]) | |
prompt = f"{prompt}\nASSISTANT: " | |
return prompt | |
def generate( | |
message: str, | |
chat_history: list[tuple[str, str]], | |
max_new_tokens: int = 1024, | |
temperature: float = 0.7, | |
top_p: float = 0.95, | |
top_k: int = 50, | |
repetition_penalty: float = 1.0, | |
) -> Iterator[str]: | |
conversation = [] | |
for user, assistant in chat_history: | |
conversation.extend([{"role": "USER", "content": user}, {"role": "ASSISTANT", "content": assistant}]) | |
conversation.append({"role": "USER", "content": message}) | |
prompt = apply_chat_template(conversation) | |
input_ids = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt") | |
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH: | |
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:] | |
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.") | |
input_ids = input_ids.to(model.device) | |
output_queue = Queue() | |
def inference(): | |
outputs = model.generate( | |
input_ids=input_ids, | |
max_new_tokens=max_new_tokens, | |
do_sample=True, | |
top_p=top_p, | |
top_k=top_k, | |
temperature=temperature, | |
repetition_penalty=repetition_penalty, | |
pad_token_id=tokenizer.eos_token_id, | |
) | |
for token in tokenizer.decode(outputs[0], skip_special_tokens=True).split(): | |
output_queue.put(token) | |
output_queue.put(None) # 終了シグナル | |
Thread(target=inference).start() | |
outputs = [] | |
while True: | |
try: | |
token = output_queue.get(timeout=20.0) # タイムアウト設定 | |
if token is None: | |
break | |
outputs.append(token) | |
yield "".join(outputs) | |
except Empty: | |
yield "現在応答を生成中です。しばらくお待ちください。" | |
demo = gr.ChatInterface( | |
fn=generate, | |
type="tuples", | |
additional_inputs_accordion=gr.Accordion(label="詳細設定", open=False), | |
additional_inputs=[ | |
gr.Slider( | |
label="Max new tokens", | |
minimum=1, | |
maximum=MAX_MAX_NEW_TOKENS, | |
step=1, | |
value=DEFAULT_MAX_NEW_TOKENS, | |
), | |
gr.Slider( | |
label="Temperature", | |
minimum=0.1, | |
maximum=4.0, | |
step=0.1, | |
value=0.7, | |
), | |
gr.Slider( | |
label="Top-p (nucleus sampling)", | |
minimum=0.05, | |
maximum=1.0, | |
step=0.05, | |
value=0.95, | |
), | |
gr.Slider( | |
label="Top-k", | |
minimum=1, | |
maximum=1000, | |
step=1, | |
value=50, | |
), | |
gr.Slider( | |
label="Repetition penalty", | |
minimum=1.0, | |
maximum=2.0, | |
step=0.05, | |
value=1.0, | |
), | |
], | |
stop_btn=None, | |
examples=[ | |
["東京の観光名所を教えて。"], | |
["落武者って何?"], | |
["暴れん坊将軍って誰のこと?"], | |
["人がヘリを食べるのにかかる時間は?"], | |
], | |
description=DESCRIPTION, | |
css_paths="style.css", | |
fill_height=True, | |
) | |
if __name__ == "__main__": | |
demo.launch() |