Spaces:
Runtime error
Runtime error
Sajjad Ali
commited on
Commit
•
06d6d2e
1
Parent(s):
6d14492
Added code
Browse files
app.py
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from PIL import Image
|
3 |
+
from models import predict
|
4 |
+
import numpy
|
5 |
+
|
6 |
+
|
7 |
+
def load_image(image_file):
|
8 |
+
img = Image.open(image_file)
|
9 |
+
return img
|
10 |
+
|
11 |
+
|
12 |
+
st.title("Cataract Image Classification")
|
13 |
+
|
14 |
+
st.header('Enter the fundus image')
|
15 |
+
st.subheader("KNN Model")
|
16 |
+
|
17 |
+
image_file = st.file_uploader("Upload Images", type=["png", "jpg", "jpeg"])
|
18 |
+
|
19 |
+
if image_file is not None:
|
20 |
+
img = load_image(image_file)
|
21 |
+
st.image(img, width=250)
|
22 |
+
open_cv_image = numpy.array(img)
|
23 |
+
label, prob = predict(open_cv_image)
|
24 |
+
st.write(f"Label : {label}")
|
25 |
+
st.write(f"Probability: {prob}")
|
model.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fa462398536a1ad24d9dcd31975a6ffd20e15bdfdc7d9bfde17fbb0bad05a7c4
|
3 |
+
size 121565
|
models.py
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import pandas as pd
|
3 |
+
import cv2 as cv
|
4 |
+
import streamlit as st
|
5 |
+
import matplotlib.pyplot as plt
|
6 |
+
from skimage.feature import graycomatrix, graycoprops
|
7 |
+
import joblib
|
8 |
+
|
9 |
+
indextable = ['dissimilarity', 'contrast',
|
10 |
+
'homogeneity', 'energy', 'correlation', 'Label']
|
11 |
+
obj = {
|
12 |
+
0.0: "Normal",
|
13 |
+
1.0: "Cataract",
|
14 |
+
2.0: "Glaucoma",
|
15 |
+
3.0: 'Retina Disease'
|
16 |
+
}
|
17 |
+
width, height = 400, 400
|
18 |
+
distance = 10
|
19 |
+
teta = 90
|
20 |
+
|
21 |
+
# Code to extract features from Image using Gray Level Co occurrence Image
|
22 |
+
|
23 |
+
|
24 |
+
def get_feature(matrix, name):
|
25 |
+
feature = graycoprops(matrix, name)
|
26 |
+
result = np.average(feature)
|
27 |
+
return result
|
28 |
+
|
29 |
+
|
30 |
+
def preprocessingImage(image):
|
31 |
+
test_img = cv.cvtColor(image, cv.COLOR_BGR2RGB)
|
32 |
+
test_img_gray = cv.cvtColor(test_img, cv.COLOR_RGB2GRAY)
|
33 |
+
test_img_thresh = cv.adaptiveThreshold(
|
34 |
+
test_img_gray, 255, cv.ADAPTIVE_THRESH_GAUSSIAN_C, cv.THRESH_BINARY_INV, 11, 3)
|
35 |
+
|
36 |
+
cnts = cv.findContours(
|
37 |
+
test_img_thresh, cv.RETR_EXTERNAL, cv.CHAIN_APPROX_SIMPLE)
|
38 |
+
cnts = cnts[0] if len(cnts) == 2 else cnts[1]
|
39 |
+
cnts = sorted(cnts, key=cv.contourArea, reverse=True)
|
40 |
+
|
41 |
+
for c in cnts:
|
42 |
+
x, y, w, h = cv.boundingRect(c)
|
43 |
+
test_img_ROI = test_img[y:y+h, x:x+w]
|
44 |
+
break
|
45 |
+
|
46 |
+
test_img_ROI_resize = cv.resize(test_img_ROI, (width, height))
|
47 |
+
test_img_ROI_resize_gray = cv.cvtColor(
|
48 |
+
test_img_ROI_resize, cv.COLOR_RGB2GRAY)
|
49 |
+
|
50 |
+
return test_img_ROI_resize_gray
|
51 |
+
|
52 |
+
|
53 |
+
def extract(path):
|
54 |
+
data_eye = np.zeros((5, 1))
|
55 |
+
|
56 |
+
# path = cv.imread(path)
|
57 |
+
img = preprocessingImage(path)
|
58 |
+
|
59 |
+
glcm = graycomatrix(img, [distance], [teta],
|
60 |
+
levels=256, symmetric=True, normed=True)
|
61 |
+
|
62 |
+
for i in range(len(indextable[:-1])):
|
63 |
+
features = []
|
64 |
+
feature = get_feature(glcm, indextable[i])
|
65 |
+
features.append(feature)
|
66 |
+
data_eye[i, 0] = features[0]
|
67 |
+
return pd.DataFrame(np.transpose(data_eye), columns=indextable[:-1])
|
68 |
+
|
69 |
+
|
70 |
+
"""
|
71 |
+
Return predicted class with its probability
|
72 |
+
"""
|
73 |
+
|
74 |
+
model = joblib.load("model.pkl")
|
75 |
+
|
76 |
+
|
77 |
+
@st.cache
|
78 |
+
def predict(path):
|
79 |
+
X = extract(path)
|
80 |
+
y = model.predict(X)[0]
|
81 |
+
prob = model.predict_proba(X)[0, int(y)]
|
82 |
+
return (obj[y], prob)
|
requirements.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
numpy
|
2 |
+
pandas
|
3 |
+
opencv-python
|
4 |
+
matplotlib
|
5 |
+
scikit-learn
|
6 |
+
scikit-image
|
7 |
+
streamlit
|
8 |
+
joblib
|
9 |
+
pillow
|