Spaces:
Runtime error
Runtime error
| import librosa | |
| import torch | |
| from torch import nn | |
| from functools import partial | |
| from math import prod | |
| from typing import Callable, Tuple, List | |
| import numpy as np | |
| import torch.nn.functional as F | |
| from torch.nn import Conv1d | |
| from torch.nn.utils import weight_norm | |
| from torch.nn.utils.parametrize import remove_parametrizations as remove_weight_norm | |
| from diffusers.models.modeling_utils import ModelMixin | |
| from diffusers.loaders import FromOriginalModelMixin | |
| from diffusers.configuration_utils import ConfigMixin, register_to_config | |
| try: | |
| from music_log_mel import LogMelSpectrogram | |
| except ImportError: | |
| from .music_log_mel import LogMelSpectrogram | |
| def drop_path( | |
| x, drop_prob: float = 0.0, training: bool = False, scale_by_keep: bool = True | |
| ): | |
| """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). | |
| This is the same as the DropConnect impl I created for EfficientNet, etc networks, however, | |
| the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper... | |
| See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for | |
| changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use | |
| 'survival rate' as the argument. | |
| """ # noqa: E501 | |
| if drop_prob == 0.0 or not training: | |
| return x | |
| keep_prob = 1 - drop_prob | |
| shape = (x.shape[0],) + (1,) * ( | |
| x.ndim - 1 | |
| ) # work with diff dim tensors, not just 2D ConvNets | |
| random_tensor = x.new_empty(shape).bernoulli_(keep_prob) | |
| if keep_prob > 0.0 and scale_by_keep: | |
| random_tensor.div_(keep_prob) | |
| return x * random_tensor | |
| class DropPath(nn.Module): | |
| """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).""" # noqa: E501 | |
| def __init__(self, drop_prob: float = 0.0, scale_by_keep: bool = True): | |
| super(DropPath, self).__init__() | |
| self.drop_prob = drop_prob | |
| self.scale_by_keep = scale_by_keep | |
| def forward(self, x): | |
| return drop_path(x, self.drop_prob, self.training, self.scale_by_keep) | |
| def extra_repr(self): | |
| return f"drop_prob={round(self.drop_prob,3):0.3f}" | |
| class LayerNorm(nn.Module): | |
| r"""LayerNorm that supports two data formats: channels_last (default) or channels_first. | |
| The ordering of the dimensions in the inputs. channels_last corresponds to inputs with | |
| shape (batch_size, height, width, channels) while channels_first corresponds to inputs | |
| with shape (batch_size, channels, height, width). | |
| """ # noqa: E501 | |
| def __init__(self, normalized_shape, eps=1e-6, data_format="channels_last"): | |
| super().__init__() | |
| self.weight = nn.Parameter(torch.ones(normalized_shape)) | |
| self.bias = nn.Parameter(torch.zeros(normalized_shape)) | |
| self.eps = eps | |
| self.data_format = data_format | |
| if self.data_format not in ["channels_last", "channels_first"]: | |
| raise NotImplementedError | |
| self.normalized_shape = (normalized_shape,) | |
| def forward(self, x): | |
| if self.data_format == "channels_last": | |
| return F.layer_norm( | |
| x, self.normalized_shape, self.weight, self.bias, self.eps | |
| ) | |
| elif self.data_format == "channels_first": | |
| u = x.mean(1, keepdim=True) | |
| s = (x - u).pow(2).mean(1, keepdim=True) | |
| x = (x - u) / torch.sqrt(s + self.eps) | |
| x = self.weight[:, None] * x + self.bias[:, None] | |
| return x | |
| class ConvNeXtBlock(nn.Module): | |
| r"""ConvNeXt Block. There are two equivalent implementations: | |
| (1) DwConv -> LayerNorm (channels_first) -> 1x1 Conv -> GELU -> 1x1 Conv; all in (N, C, H, W) | |
| (2) DwConv -> Permute to (N, H, W, C); LayerNorm (channels_last) -> Linear -> GELU -> Linear; Permute back | |
| We use (2) as we find it slightly faster in PyTorch | |
| Args: | |
| dim (int): Number of input channels. | |
| drop_path (float): Stochastic depth rate. Default: 0.0 | |
| layer_scale_init_value (float): Init value for Layer Scale. Default: 1e-6. | |
| mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4.0. | |
| kernel_size (int): Kernel size for depthwise conv. Default: 7. | |
| dilation (int): Dilation for depthwise conv. Default: 1. | |
| """ # noqa: E501 | |
| def __init__( | |
| self, | |
| dim: int, | |
| drop_path: float = 0.0, | |
| layer_scale_init_value: float = 1e-6, | |
| mlp_ratio: float = 4.0, | |
| kernel_size: int = 7, | |
| dilation: int = 1, | |
| ): | |
| super().__init__() | |
| self.dwconv = nn.Conv1d( | |
| dim, | |
| dim, | |
| kernel_size=kernel_size, | |
| padding=int(dilation * (kernel_size - 1) / 2), | |
| groups=dim, | |
| ) # depthwise conv | |
| self.norm = LayerNorm(dim, eps=1e-6) | |
| self.pwconv1 = nn.Linear( | |
| dim, int(mlp_ratio * dim) | |
| ) # pointwise/1x1 convs, implemented with linear layers | |
| self.act = nn.GELU() | |
| self.pwconv2 = nn.Linear(int(mlp_ratio * dim), dim) | |
| self.gamma = ( | |
| nn.Parameter(layer_scale_init_value * | |
| torch.ones((dim)), requires_grad=True) | |
| if layer_scale_init_value > 0 | |
| else None | |
| ) | |
| self.drop_path = DropPath( | |
| drop_path) if drop_path > 0.0 else nn.Identity() | |
| def forward(self, x, apply_residual: bool = True): | |
| input = x | |
| x = self.dwconv(x) | |
| x = x.permute(0, 2, 1) # (N, C, L) -> (N, L, C) | |
| x = self.norm(x) | |
| x = self.pwconv1(x) | |
| x = self.act(x) | |
| x = self.pwconv2(x) | |
| if self.gamma is not None: | |
| x = self.gamma * x | |
| x = x.permute(0, 2, 1) # (N, L, C) -> (N, C, L) | |
| x = self.drop_path(x) | |
| if apply_residual: | |
| x = input + x | |
| return x | |
| class ParallelConvNeXtBlock(nn.Module): | |
| def __init__(self, kernel_sizes: List[int], *args, **kwargs): | |
| super().__init__() | |
| self.blocks = nn.ModuleList( | |
| [ | |
| ConvNeXtBlock(kernel_size=kernel_size, *args, **kwargs) | |
| for kernel_size in kernel_sizes | |
| ] | |
| ) | |
| def forward(self, x: torch.Tensor) -> torch.Tensor: | |
| return torch.stack( | |
| [block(x, apply_residual=False) for block in self.blocks] + [x], | |
| dim=1, | |
| ).sum(dim=1) | |
| class ConvNeXtEncoder(nn.Module): | |
| def __init__( | |
| self, | |
| input_channels=3, | |
| depths=[3, 3, 9, 3], | |
| dims=[96, 192, 384, 768], | |
| drop_path_rate=0.0, | |
| layer_scale_init_value=1e-6, | |
| kernel_sizes: Tuple[int] = (7,), | |
| ): | |
| super().__init__() | |
| assert len(depths) == len(dims) | |
| self.channel_layers = nn.ModuleList() | |
| stem = nn.Sequential( | |
| nn.Conv1d( | |
| input_channels, | |
| dims[0], | |
| kernel_size=7, | |
| padding=3, | |
| padding_mode="replicate", | |
| ), | |
| LayerNorm(dims[0], eps=1e-6, data_format="channels_first"), | |
| ) | |
| self.channel_layers.append(stem) | |
| for i in range(len(depths) - 1): | |
| mid_layer = nn.Sequential( | |
| LayerNorm(dims[i], eps=1e-6, data_format="channels_first"), | |
| nn.Conv1d(dims[i], dims[i + 1], kernel_size=1), | |
| ) | |
| self.channel_layers.append(mid_layer) | |
| block_fn = ( | |
| partial(ConvNeXtBlock, kernel_size=kernel_sizes[0]) | |
| if len(kernel_sizes) == 1 | |
| else partial(ParallelConvNeXtBlock, kernel_sizes=kernel_sizes) | |
| ) | |
| self.stages = nn.ModuleList() | |
| drop_path_rates = [ | |
| x.item() for x in torch.linspace(0, drop_path_rate, sum(depths)) | |
| ] | |
| cur = 0 | |
| for i in range(len(depths)): | |
| stage = nn.Sequential( | |
| *[ | |
| block_fn( | |
| dim=dims[i], | |
| drop_path=drop_path_rates[cur + j], | |
| layer_scale_init_value=layer_scale_init_value, | |
| ) | |
| for j in range(depths[i]) | |
| ] | |
| ) | |
| self.stages.append(stage) | |
| cur += depths[i] | |
| self.norm = LayerNorm(dims[-1], eps=1e-6, data_format="channels_first") | |
| self.apply(self._init_weights) | |
| def _init_weights(self, m): | |
| if isinstance(m, (nn.Conv1d, nn.Linear)): | |
| nn.init.trunc_normal_(m.weight, std=0.02) | |
| nn.init.constant_(m.bias, 0) | |
| def forward( | |
| self, | |
| x: torch.Tensor, | |
| ) -> torch.Tensor: | |
| for channel_layer, stage in zip(self.channel_layers, self.stages): | |
| x = channel_layer(x) | |
| x = stage(x) | |
| return self.norm(x) | |
| def init_weights(m, mean=0.0, std=0.01): | |
| classname = m.__class__.__name__ | |
| if classname.find("Conv") != -1: | |
| m.weight.data.normal_(mean, std) | |
| def get_padding(kernel_size, dilation=1): | |
| return (kernel_size * dilation - dilation) // 2 | |
| class ResBlock1(torch.nn.Module): | |
| def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5)): | |
| super().__init__() | |
| self.convs1 = nn.ModuleList( | |
| [ | |
| weight_norm( | |
| Conv1d( | |
| channels, | |
| channels, | |
| kernel_size, | |
| 1, | |
| dilation=dilation[0], | |
| padding=get_padding(kernel_size, dilation[0]), | |
| ) | |
| ), | |
| weight_norm( | |
| Conv1d( | |
| channels, | |
| channels, | |
| kernel_size, | |
| 1, | |
| dilation=dilation[1], | |
| padding=get_padding(kernel_size, dilation[1]), | |
| ) | |
| ), | |
| weight_norm( | |
| Conv1d( | |
| channels, | |
| channels, | |
| kernel_size, | |
| 1, | |
| dilation=dilation[2], | |
| padding=get_padding(kernel_size, dilation[2]), | |
| ) | |
| ), | |
| ] | |
| ) | |
| self.convs1.apply(init_weights) | |
| self.convs2 = nn.ModuleList( | |
| [ | |
| weight_norm( | |
| Conv1d( | |
| channels, | |
| channels, | |
| kernel_size, | |
| 1, | |
| dilation=1, | |
| padding=get_padding(kernel_size, 1), | |
| ) | |
| ), | |
| weight_norm( | |
| Conv1d( | |
| channels, | |
| channels, | |
| kernel_size, | |
| 1, | |
| dilation=1, | |
| padding=get_padding(kernel_size, 1), | |
| ) | |
| ), | |
| weight_norm( | |
| Conv1d( | |
| channels, | |
| channels, | |
| kernel_size, | |
| 1, | |
| dilation=1, | |
| padding=get_padding(kernel_size, 1), | |
| ) | |
| ), | |
| ] | |
| ) | |
| self.convs2.apply(init_weights) | |
| def forward(self, x): | |
| for c1, c2 in zip(self.convs1, self.convs2): | |
| xt = F.silu(x) | |
| xt = c1(xt) | |
| xt = F.silu(xt) | |
| xt = c2(xt) | |
| x = xt + x | |
| return x | |
| def remove_weight_norm(self): | |
| for conv in self.convs1: | |
| remove_weight_norm(conv) | |
| for conv in self.convs2: | |
| remove_weight_norm(conv) | |
| class HiFiGANGenerator(nn.Module): | |
| def __init__( | |
| self, | |
| *, | |
| hop_length: int = 512, | |
| upsample_rates: Tuple[int] = (8, 8, 2, 2, 2), | |
| upsample_kernel_sizes: Tuple[int] = (16, 16, 8, 2, 2), | |
| resblock_kernel_sizes: Tuple[int] = (3, 7, 11), | |
| resblock_dilation_sizes: Tuple[Tuple[int]] = ( | |
| (1, 3, 5), (1, 3, 5), (1, 3, 5)), | |
| num_mels: int = 128, | |
| upsample_initial_channel: int = 512, | |
| use_template: bool = True, | |
| pre_conv_kernel_size: int = 7, | |
| post_conv_kernel_size: int = 7, | |
| post_activation: Callable = partial(nn.SiLU, inplace=True), | |
| ): | |
| super().__init__() | |
| assert ( | |
| prod(upsample_rates) == hop_length | |
| ), f"hop_length must be {prod(upsample_rates)}" | |
| self.conv_pre = weight_norm( | |
| nn.Conv1d( | |
| num_mels, | |
| upsample_initial_channel, | |
| pre_conv_kernel_size, | |
| 1, | |
| padding=get_padding(pre_conv_kernel_size), | |
| ) | |
| ) | |
| self.num_upsamples = len(upsample_rates) | |
| self.num_kernels = len(resblock_kernel_sizes) | |
| self.noise_convs = nn.ModuleList() | |
| self.use_template = use_template | |
| self.ups = nn.ModuleList() | |
| for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)): | |
| c_cur = upsample_initial_channel // (2 ** (i + 1)) | |
| self.ups.append( | |
| weight_norm( | |
| nn.ConvTranspose1d( | |
| upsample_initial_channel // (2**i), | |
| upsample_initial_channel // (2 ** (i + 1)), | |
| k, | |
| u, | |
| padding=(k - u) // 2, | |
| ) | |
| ) | |
| ) | |
| if not use_template: | |
| continue | |
| if i + 1 < len(upsample_rates): | |
| stride_f0 = np.prod(upsample_rates[i + 1:]) | |
| self.noise_convs.append( | |
| Conv1d( | |
| 1, | |
| c_cur, | |
| kernel_size=stride_f0 * 2, | |
| stride=stride_f0, | |
| padding=stride_f0 // 2, | |
| ) | |
| ) | |
| else: | |
| self.noise_convs.append(Conv1d(1, c_cur, kernel_size=1)) | |
| self.resblocks = nn.ModuleList() | |
| for i in range(len(self.ups)): | |
| ch = upsample_initial_channel // (2 ** (i + 1)) | |
| for k, d in zip(resblock_kernel_sizes, resblock_dilation_sizes): | |
| self.resblocks.append(ResBlock1(ch, k, d)) | |
| self.activation_post = post_activation() | |
| self.conv_post = weight_norm( | |
| nn.Conv1d( | |
| ch, | |
| 1, | |
| post_conv_kernel_size, | |
| 1, | |
| padding=get_padding(post_conv_kernel_size), | |
| ) | |
| ) | |
| self.ups.apply(init_weights) | |
| self.conv_post.apply(init_weights) | |
| def forward(self, x, template=None): | |
| x = self.conv_pre(x) | |
| for i in range(self.num_upsamples): | |
| x = F.silu(x, inplace=True) | |
| x = self.ups[i](x) | |
| if self.use_template: | |
| x = x + self.noise_convs[i](template) | |
| xs = None | |
| for j in range(self.num_kernels): | |
| if xs is None: | |
| xs = self.resblocks[i * self.num_kernels + j](x) | |
| else: | |
| xs += self.resblocks[i * self.num_kernels + j](x) | |
| x = xs / self.num_kernels | |
| x = self.activation_post(x) | |
| x = self.conv_post(x) | |
| x = torch.tanh(x) | |
| return x | |
| def remove_weight_norm(self): | |
| for up in self.ups: | |
| remove_weight_norm(up) | |
| for block in self.resblocks: | |
| block.remove_weight_norm() | |
| remove_weight_norm(self.conv_pre) | |
| remove_weight_norm(self.conv_post) | |
| class ADaMoSHiFiGANV1(ModelMixin, ConfigMixin, FromOriginalModelMixin): | |
| def __init__( | |
| self, | |
| input_channels: int = 128, | |
| depths: List[int] = [3, 3, 9, 3], | |
| dims: List[int] = [128, 256, 384, 512], | |
| drop_path_rate: float = 0.0, | |
| kernel_sizes: Tuple[int] = (7,), | |
| upsample_rates: Tuple[int] = (4, 4, 2, 2, 2, 2, 2), | |
| upsample_kernel_sizes: Tuple[int] = (8, 8, 4, 4, 4, 4, 4), | |
| resblock_kernel_sizes: Tuple[int] = (3, 7, 11, 13), | |
| resblock_dilation_sizes: Tuple[Tuple[int]] = ( | |
| (1, 3, 5), (1, 3, 5), (1, 3, 5), (1, 3, 5)), | |
| num_mels: int = 512, | |
| upsample_initial_channel: int = 1024, | |
| use_template: bool = False, | |
| pre_conv_kernel_size: int = 13, | |
| post_conv_kernel_size: int = 13, | |
| sampling_rate: int = 44100, | |
| n_fft: int = 2048, | |
| win_length: int = 2048, | |
| hop_length: int = 512, | |
| f_min: int = 40, | |
| f_max: int = 16000, | |
| n_mels: int = 128, | |
| ): | |
| super().__init__() | |
| self.backbone = ConvNeXtEncoder( | |
| input_channels=input_channels, | |
| depths=depths, | |
| dims=dims, | |
| drop_path_rate=drop_path_rate, | |
| kernel_sizes=kernel_sizes, | |
| ) | |
| self.head = HiFiGANGenerator( | |
| hop_length=hop_length, | |
| upsample_rates=upsample_rates, | |
| upsample_kernel_sizes=upsample_kernel_sizes, | |
| resblock_kernel_sizes=resblock_kernel_sizes, | |
| resblock_dilation_sizes=resblock_dilation_sizes, | |
| num_mels=num_mels, | |
| upsample_initial_channel=upsample_initial_channel, | |
| use_template=use_template, | |
| pre_conv_kernel_size=pre_conv_kernel_size, | |
| post_conv_kernel_size=post_conv_kernel_size, | |
| ) | |
| self.sampling_rate = sampling_rate | |
| self.mel_transform = LogMelSpectrogram( | |
| sample_rate=sampling_rate, | |
| n_fft=n_fft, | |
| win_length=win_length, | |
| hop_length=hop_length, | |
| f_min=f_min, | |
| f_max=f_max, | |
| n_mels=n_mels, | |
| ) | |
| self.eval() | |
| def decode(self, mel): | |
| y = self.backbone(mel) | |
| y = self.head(y) | |
| return y | |
| def encode(self, x): | |
| return self.mel_transform(x) | |
| def forward(self, mel): | |
| y = self.backbone(mel) | |
| y = self.head(y) | |
| return y | |
| if __name__ == "__main__": | |
| import soundfile as sf | |
| x = "test_audio.flac" | |
| model = ADaMoSHiFiGANV1.from_pretrained("./checkpoints/music_vocoder", local_files_only=True) | |
| wav, sr = librosa.load(x, sr=44100, mono=True) | |
| wav = torch.from_numpy(wav).float()[None] | |
| mel = model.encode(wav) | |
| wav = model.decode(mel)[0].mT | |
| sf.write("test_audio_vocoder_rec.flac", wav.cpu().numpy(), 44100) | |